Paper-Based Devices | Electrochemistry | Environmental Analysis
Biosensors | Electrophoresis | Microfluidic Devices | Review Articles
Paper-Based Devices
103. “Application of chimeric antigens to paper-based diagnostics for detection of West Nile virus infections of Crocodylus porosus – A novel animal test case.” Johnston, R.A., Habarugira, G., Harrison, J.J., Isberg, S.R., Moran, J., Morgan, M.S., Davis, S.S., Melville, L., Howard, C.B., Henry, C.S., Macdonald, J., Bielefeldt-Ohmann, H., Hall, R.A., Hobson-Peters, J. Sensors and Actuators B: Chemical , 2024, DOI:10.1016/j.snb.2024.136611
102. “Citizen-Based Water Quality Monitoring: Field Testing a User-Friendly Sensor for Phosphate Detection in Global Surface Waters.” Aryal, P., Hefner, C.E., Martinez, B., Brack, E., Henry, C.S. Analytical Chemistry , 2024, DOI:10.1021/acs.analchem.4c02123
101. “Microfluidic paper-based analytical devices for simple and nondestructive durian fruit maturity assessment.” Mettakoonpitak, J., Chanthabun, A., Hatsakhun, P., Sirasunthorn, N., Siripinyanond, A., Henry, C.S. Analytica Chimica Acta , 2024, DOI:10.1016/j.aca.2024.343252
100. “Peptide nucleic acid probe-assisted paper-based electrochemical biosensor for multiplexed detection of respiratory viruses.” Lomae, A., Teekayupak, K., Preechakasedkit, P., Pasomsub, E., Ozer, T., Henry, C.S., Citterio, D., Vilaivan, T., Chailapakul, O., Ruecha, N. Talanta , 2024, DOI:10.1016/j.talanta.2024.126613
99. “Fill, Fold, Photo: Preconcentration and Multiplex Detection of Trace Level Heavy Metals in Water.” Aryal, P., Boes, J., Brack, E., Alexander, T., Henry, C.S. ACS Sensors , 2024, DOI:10.1021/acssensors.4c01708
98. “Microfluidic paper-based analytical devices for simple and nondestructive durian fruit maturity assessment.” Mettakoonpitak, J., Chanthabun, A., Hatsakhun, P., Sirasunthorn, N., Siripinyanond, A., Henry, C.S. Analytica Chimica Acta , 2024, DOI:10.1016/j.aca.2024.343252
97. “Application of chimeric antigens to paper-based diagnostics for detection of West Nile virus infections of Crocodylus porosus – A novel animal test case.” Johnston, R.A., Habarugira, G., Harrison, J.J., Isberg, S.R., Moran, J., Morgan, M.S., Davis, S.S., Melville, L., Howard, C.B., Henry, C.S., Macdonald, J., Bielefeldt-Ohmann, H., Hall, R.A., Hobson-Peters, J. Sensors and Actuators B: Chemical , 2024, DOI:10.1016/j.snb.2024.136611
96. “Recent Trends in Nanomaterial Based Electrochemical Sensors for Drug Detection: Considering Green Assessment.” Ozer, T., Henry, C.S. Current Topics in Medicinal Chemistry , 2024, DOI:10.2174/0115680266286981240207053402
95. “Smartphone-enabled green anthocyanin sensor for Fe(III) sensing on paper using capillary-driven microfluidics.” Aryal, P., Indrianingsih, A.W., Henry, C.S. Green Analytical Chemistry , 2024, DOI:10.1016/j.greeac.2023.100091
94. “Multiplexed Capillary-Flow Driven Immunoassay for Respiratory Illnesses.” Link, J.S., O’Donnell-Sloan, J.J., Curdts, S., Geiss, B.J., Dandy, D.S., Henry, C.S. Analytical Chemistry , 2024, DOI:10.1021/acs.analchem.3c04977
93. “Non-invasive iron deficiency diagnosis: a saliva-based approach using capillary flow microfluidics.” Prakobdi, C., Baldo, T.A., Aryal, P., Link, J.S., Saetear, P., Henry, C.S. Analytical Methods , 2024, DOI:10.1039/D3AY01933K
92. “The use of Clitoria ternatea as sustainable detection tool for Ni (II) and Cu (II) ions in simple paper-based analytical device.” Indrianingsih, A.W., Aryal, P., Henry, C.S. IOP Conference Series: Earth and Environmental Science , 2023, DOI:10.1088/1755-1315/1267/1/012003
91. “Microfluidic paper-based analytical devices for simultaneous detection of oxidative potential and copper in aerosol samples” Mettakoonpitak, J., Sawatdichai, N., Thepnuan, D., Siripinyanond, A, Henry, C.S. & Chantara, S. Theranostics, 2023, DOI: 10.1007/s00604-023-05819-7
90. “Saliva-based microfluidic point-of-care diagnostic” Pittman, T.W., Desci, D.B., Punyadeera, C. and Henry, C.S. Theranostics, 2023, DOI: 10.7150/thno.78872
89. “A smartphone-assisted hybrid sensor for simultaneous potentiometric and distance-based detection of electrolytes” Phoonsawat, K., Agir, I., Dungchai, W., Ozer, T., and Henry, C.S. Analytica Chimica Acta, 2022, DOI: 10.1016/j.aca.2022.340245
88. “Progress toward a Simplified UTI Diagnostic: Pump-Free Magnetophoresis for E. coli Detection” Call, Z.D., Jang, I., Geiss, B.J., Dandy, D.S., and Henry, C.S. Anal. Chem., 2022, DOI: 10.1021/acs.analchem.2c00316
87. “Colorimetric Paper-Based Analytical Device for Perfluorooctanesulfonate Detection” Menger, R., Beck, J.,Borch, T., and Henry, C.S. ACS EST Water, 2022, DOI: 10.1021/acsestwater.1c00356
86. “An electrochemical paper-based analytical sensor for one-step latex protein detection.” Mettakoonpitak, J., Junkong, P., Saenonphut, A., Kwamman, T., Siripinyanond, A., and Henry, C.S. Analyst, 2022, DOI: 10.1039/D1AN02067F
85. “A novel l-cysteine sensor using in-situ electropolymerization of l-cysteine: Potential to simple and selective detection” Khamcharoen, W., Henry, C. S., Siangproh, W. Talanta, 2021, DOI: 10.1016/j.talanta.2021.122983
84. “Immobilization of Proteinase K for urine pretreatment to improve diagnostic accuracy of active tuberculosis” Panraska, Y., Amin, A., Graham, B., Henry, C. S., Chatterjee, D. PLOS ONE, 2021, DOI: 10.1371/journal.pone.0257615
83.“Paper-based analytical devices for virus detection: Recent strategies for current and future pandemics” Ozer, T. and Henry, C. S., Trends in Analytical Chemistry, 2021, DOI: 10.1016/j.trac.2021.116424
82.“Distance-Based Paper Device for a Naked-Eye Albumin-to-Alkaline Phosphatase Ratio Assay” Phoonsawat, K., Khachornsakkul, K., Henry C. S., Dungchai, W. ACS Sensors, 2021, DOI: 10.1021/acssensors.1c01058
81.”Plug-and-play assembly of paper-based colorimetric and electrochemical devices for multiplexed detection of metals” Silva-Neto, H.A.; Cardoso, T.M.G; McMahon, C. J.; Sgobbi, L.F.; Henry, C.S; Coltro, W.K.T. Analyst, 2021. DOI: 10.1039/d1an00176k
80. “Highly selective simultaneous Cu(II), Co(II), Ni(II), Hg(II), Mn(II) determination in water samples on microfluidic paper-based analytical devices” Kamnoet, P. Aeungmaitrepirom, W., Menger, R.F., Henry, C.S. Analyst, 2021, DOI: 10.1039/D0An02200D
79. “Simple Biodegradable Plastic Screen-Printing for Microfluidic Paper-Based Analytical Devices” Mettakoonpitak, J., Khongsoun, K., Wongwan, N., Kaewbutdee, S., Siripinyanond, A., Kuharuk, A., Henry, C.S. Sensors and Actuators B: Chemical, 2021, DOI: 10.1016/j.snb.2021.129463
78. “Electrochemical paper-based analytical device for multiplexed, point-of-care detection of cardiovascular disease biomarkers” Boonkaew, S., Jang, I., Noviana, E., Siangproh, W., Chailapakul, O., Henry, C.S. Sensors and Actuators B: Chemical, 2020, DOI: 10.1016/j.sng.2020.129336
77. “Dual sample Preconcentration for Simultaneous Quantification of Metal Ions Using Electrochemical and Colorimetric Assays” Ninwong, B., Ratnarathorn, N., Henry, C.S., Mace, C.R., Dungchai, W ACS Sensors, 2020, DOI: 10.1021/acssensors.0c01793
76. “Paper-Based Pump-Free Magnetophoresis” Call, Z., Carrell, C., Jang, I., Geiss, B., Dandy, D., Henry, C.S. Analytical Methods, 2020, DOI: 10.1039/DoAY1523G
75. “Point-of-Need Disposable ELISA System for COVID-19 Serology Testing” Carrell, C., Link, J., Jang, I., Terry, J., Scherman, M., Call, Z., Panraksa, Y., Dandy, D.S., Geiss, B.J., Henry, C.S. ChemRXiV, 2020.
74. “Pump-Free Microfluidic Rapid Mixer Combined with a Paper-Based Channel” Jang, I., Carrao, D., Menger, R., de Oliveira A.R., Henry, C.S., ACS Sensors, 2020, DOI: 10.1021/acssensors.0c00937
73. “Viscosity Measurements Utilizing a Fast-Flow Microfluidic Paper-Based Device” Jang, I. Berg, K.E., Henry, C.S., Sensors and Actuators B: Chemical, 2020, DOI: 10.1016/j.snb.2020.128240
72. “Paper-based nuclease protection assay with on-chip sample pretreatment for point-of-need nucleic acid detection” Noviana, E., Jain, S., Hostetter, J., Geiss, B.J., Dandy, D.S., Henry, C.S. Analytical and Bioanalytical Chemistry, 2020, DOI: 10.1007/s00216-020-02569-w
71. “Sensitive distance-based paper-based quantification of mercury ions using carbon nanodots and heating-based preconcentration” Ninwong, B., Sangkaew, P., Hapa, P., Ratnarathorn, N., Menger, R.F., Henry, C.S., Dunchai, W. RSC Advances. 2020, 10, 9884.
70. “Simultaneous Electrochemical Detection in Paper-Based Analytical Devices” Noviana, E., Henry, C.S. Current Opinion in Electrochemistry. 2020, DOI: 10.1016/j.coelec.2020.02.013
69. “Advances in Paper-Based Analytical Devices” Ozer, T., McMahon, C., Henry, C.S., Annual Review of Analytical Chemistry. 2020, 13(1), 15-19.
68. “Rapid Analysis in Continuous Flow Electrochemical Paper-Based Analytical Devices” Pradela-Filho, L.A., Noviana, E., Araujo, D., Takeuchi, R., Santos, A., Henry, C.S. ACS Sensors. 2020, DOI:10.1021/acssensors.9b02298
67. “Janus Electrochemical Paper-Based Analytical Devices for Metals Detection in Aerosol Samples” Mettakoonpiak, J., Volckens, J., Henry, C.S. Analytical Chemistry, 2019, DOI: 10.1021/acs.analchem.9b04632
66. “Read-by-eye quantification of aluminum (III) in distance-based microfluidic paper-based analytical devices” Nguyen, M.P., Kelly, S. P., Wydallis, J.B., Henry, C.S. Analytica Chimica Acta, 2019, DOI: 10.1016/j.aca.2019.11.052
65. “USB powered microfluidic paper-based analytical devices” Schaumburg, F., Kler, P.A., Carrell, C.S., Berli, C.L.A., Henry, C.S. Electrophoresis, 2019, DOI: 10.1002/elps.201900273
64.”Multilayered Microfluidic Paper-Based Devices: Characterization, Modeling, and Perspectives” Channon, R.B., Nguyen, M.P., Henry, C.S., Dandy, D.S. Analytical Chemistry, 2019, DOI: 10.1021/acs.analchem.9b01112
63. “Janus Electrochemistry: Simultaneous Electrochemical Detection at Multiple Working Conditions in a Paper-based Analytical Device” Nantaphol, S., Kava, A.A., Channon, R.B., Kondo, T., Siangproh, W., Chailapakul, O., Henry, C.S. Analytica Chimica Acta, 2019, Accepted Manuscript, DOI:10.1016/j.aca.2019.01.026
62. “Rotary manifold for automating a paper-based Salmonella immunoassay” Carrell, C.S., Wydallis, R.M., Bontha, M., Boehle, K.E., Beveridge, J.R., Giess, B.J., Henry, C.S. RSC Advances, 2019, 9, 29078-29086
61. “Thermoplastic Electrode Arrays in Electrochemical Paper-Based Analytical Devices” Noviana, E., Klunder, K.J., Channon, R.B., Henry, C.S. Analytical Chemistry. 2019, Accepted Manuscript, DOI: 10.1021/acs.analchem.8b05218
60. “Single board computing system for automatic colorimetric analysis on low-cost analytical devices” Boehle, K.E., Doan, E., Henry, S., Beveridge, J.R., Pallickara, S.L., Henry, C.S. Analytical Methods. 2018, DOI: 10.1039/C8AY01874J
59. “Electrochemical impedance-based DNA sensor using pyrrolidinyl peptide nucleic acids for tuberculosis detection” Teengam, P., Siangproh, W., Tuantranont, A., Vilaivan, T., Chailapakul, O., Henry, C. S., Anal. Chim. Acta, 2018, Accepted Manuscript, DOI: 10.1016/j.aca.2018.07.045
58. “Distance–based Paper Sensor for Determination of Chloride ion Using Silver Nanoparticles” Phoonsawat, K., Ratnarathorn, N., Henry C. S., Dungchai, W., Analyst, 2018, Accepted Manuscript, DOI: 10.1039/C8AN00670A
57. “Electrophoretic Separations on Parafilm-Paper-Based Analytical Devices” Mettakoonpitak J., Henry, C. S., Sens. Actuators. B, 2018, Accepted Manuscript, DOI: 10.1016/j.snb.2018.06.130
56. “Detection of Analgesics and Sedation Drugs in Whiskey using Electrochemical Paper‐Based Analytical Devices” Dias, A. A., Cardoso, T. M. G., Chagas, C. L. S., Oliveira, V. X. G., Munoz, R. A. A., Henry, C. S., Santana, M. H. P., Paixão, T. R. L. C., Coltro, W. K. T., Electroanalysis, 2018, DOI: https://doi.org/10.1002/elan.201800308
55. “Paper-Based Enzyme Competition Assay for Detecting Falsified β-Lactam Antibiotics ” Boehle, K.E., Carrell, C.S., Caraway, J., Henry, C.S., ACS Sens., 2018, DOI: 10.1021/acssensors.8b00163
54. “Development of an Electrochemical Paper-Based Analytical Device for Trace Detection of Virus Particles” Channon, R. B., Yang, Y., Feibelman, K. M., Geiss, B. J., Dandy, D. S., Henry, C. S., Anal. Chem., 2018, Accepted manuscript, DOI: 10.1021/acs.analchem.8b02042
53. “Quantitative Colorimetric Paper Analytical Devices Based on Radial Distance Measurements for Aqueous Metal Determination” Hofstetter, J., Wydallis, J., Neymark, G., Thomas, T., Harrington, J., Henry, C. S., Analyst, 2018, Accepted Manuscript, DOI: 10.1039/C8AN00632F
52. “Development of Paper Based Analytical Devices for Minimizing the Viscosity Effect in Human Saliva” Noiphung, J.; Nguyen, M. P.; Punyadeera, C.; Wan, Y.; Laiwattanapaisal, W.; Henry, C. S.; Theranostics, 2018, 8(14), 3797-3807
51. “Dip-and-read” paper-based analytical devices using distance-based detection with colour screening” Yamada, K.; Citterio, C.; Henry C. S., Lab Chip, 2018, Accepted Manuscript, DOI: 10.1039/C8LC00168E
50. “Selective Distance-Based K+ Quantification on Paper-Based Microfluidics” Gerold, C. T.; Bakker, E.; Henry, C. S., Anal. Chem., 2018, Just Accepted Manuscript, DOI: 10.1021/acs.analchem.8b00559
49. “Solid-Phase Extraction Coupled to a Paper-Based Technique for Trace Copper in Drinking Water” Quinn, C. W.; Cate, D.; Miller-Lionberg, D.; Reilly, T.; Volckens, J.; Henry, C. S., Environ. Sci. Technol. 2018, Accepted Manuscript DOI: 10.1021/acs.est.7b05436
48. “Rapid Flow in Multilayer Microfluidic Paper-Based Analytical Devices” Channon, R. B.; Nguyen, M. P.; Scorzelli, A. G.; Henry, E. M.; Volckens, J.; Dandy, D. S.; Henry, C. S., Lab Chip, 2018, 18, 793-802
47. “Design considerations for reducing sample loss in microfluidic paper-based analytical devices” Nguyen, M. P.; Meredith, N. A.; Kelly, S. P.; Henry, C. S., Anal. Chim. Acta, 2018, In press, DOI: 10.1016/j.aca.2018.01.036
46. “An Instrument-free Detection of Antioxidant Activity Using Paper-based Analytical Devices Coated with Nanoceria” Piyanan, T.; Athipornchai, A.; Henry, C. S.; Sameenoi, Y., Anal. Sci., 2018, 34, (1), 97-102
45. “Highly Sensitive Detection of Salmonella typhimurium Using a Colorimetric Paper Based Analytical Device Coupled with Immunomagnetic Separation,” Srisa-Art, M.; Boehle, K. E.; Geiss, B. J.; Henry, C. S., Anal. Chem., 2018, 90 (1), 1035-1043.
44. “Laminated and infused Parafilm® − paper for paper-based analytical devices,” Shin Kin, Y.; Yang, Y.; Henry, C. S., Sens. Act. B., 2018, 255, (3), 3654-3661
43. “Low-cost reusable sensor for cobalt and nickel detection in aerosols using adsorptive cathodic square-wave stripping voltammetry” Mettakoonpitak, J.; Miller-Lionberg, D.; Reilly, T.; Volckens, J.; Henry, C. S., J. Electroanal. Chem., 2017, 805, 75-82.
42. “A Paper-Based Colorimetric Spot Test for the Identification of Adulterated Whiskeys,” Cardoso, T. M. G.; Channon, R. B.; Adkins, J. A.; Talhavini, M.; Coltro, W. K. T.; Henry, C. S. Chem. Comm, 2017, 53 (56), 7957-7960.
41. “A Selective Distance-Based Paper Analytical Device for Copper (II) Determination Using a Porphyrin Derivative,” Pratiwi, R.; Nguyen, M. P.; Ibrahim, S.; Yoshioka, N.; Henry, C. S.; Tjahjono, D. H. Talanta, 2017, 174, 493-499.
40. “Point-of-Need Simultaneous Electrochemical Detection of Lead and Cadmium Using Low-Cost Stencil-Printed Transparency Electrodes,” Martin-Yerga, D.; Alvarez-Martex, I.; Blanco-Lopez, M. C.; Henry, C. S.; Fernandez-Abedul, M. T. Anal. Chim. Acta, 2017, 981, 24-33.
39. “Utilizing Paper-Based Devices for Antimicrobial Resistant Bacteria Detection,” Boehle, K. E.; Gilliand, J.; Wheeldon, C. R.; Adkins, J. A.; Geiss, B. J.; Ryan, E. P.; Henry, C. S. Angew. Chem. Int. Ed., 2017, 56 (24), 6886-6890.
38. “Multiplex Paper-Based Colorimetric DNA Sensor Using Pyrrolidinyl Peptide Nucleic Acid-Induced AgNPs Aggregation for Detecting MERS-CoV, MTB, and HPV Oligonucleotides,” Teengam, P.; Siangproh, W.; Tuantranont, A.; Vilaivan, T.; Chailapakul, O.; Henry, C. S. Anal. Chem., 2017, 89, 5428-5435.
37. “Versatile Fabrication of Paper-Based Microfluidic Devices with High Chemical Resistance Using Scholar Glue and Magnetic Masks,” Cardoso, T. M. G.; de Souza, F. R.; Garcia, P. T.; Rabelo, D.; Henry, C. S.; Coltro, W. K. T. Anal. Chim. Acta, 2017, 974 (29), 63-68
36. “Boron Doped Diamond Paste Electrodes for Microfluidic Paper-Based Analytical Devices,” Nantaphol, S.; Channon, R. B.; Kondo, T.; Siangproh, W.; Chailapakul, O.; Henry, C. S. Anal. Chem., 2017, 89, 4100-4107.
35. “Colorimetric and Electrochemical Bacteria Detection Using Printed Paper- and Transparency-Based Analytic Devices,” Adkins, J. A.; Boehle, K.; Friend, C.; Chamberlain, B.; Bisha, B.; Henry, C. S. Anal. Chem., 2017, 89, 3613-3621.
34. “Electrochemical paper-based peptide nucleic acid biosensor for detecting human pipillomavirus,” Teengam, P.; Siangproh, W.; Tuantranont, A.; Henry, C. S.; Vilaivan, T; Chailapakul, O. Anal. Chim. Acta, 2017, 952, 32-40.
33. “Paper-based microfluidics for experimental design: screening masking agents for simulataneous determination of Mn (II) and Co (II),” Meredith, N.A.; Volckens, J.; Henry, C. S. Anal. Meth., 2017, 9, 534-540.
32. “Paper-Based Microfluidic Devices: Emerging Themes and Applications,” Yang, Y.; Noviana, E.; Nguyen, M. P.; Geiss, B. J.; Dandy, D. S.; Henry, C. S. Anal. Chem., 2017, 89, 71-91.
31. “Development of a Quasi-Steady Flow Electrochemical Paper-Based Analytical Device,” Adkins, J.A.; Noviana, E.; Henry, C. S. Anal. Chem., 2016, 88, 10639-10647.
30. “Electrochemistry on Paper‐based Analytical Devices: A Review,” Mettakoonpitak, J.; Boehle, K.; Nantaphol, S.; Teengam, P.; Adkins, J.A.; Srisa-Art, M; Henry, C. S. Electroanalysis, 2016, 28, 1420-1436.
29. “Characterizing nonconstant instrumental variance in emerging miniaturized analytical techniques,” Noblitt, S. D.; Berg, K. E.; Cate, D. M.; Henry, C. S. Anal. Chim. Acta, 2016, 915, 64-73.
28. “Paper-based analytical devices for environmental analysis,” Meredith, N. A.; Quinn, C.; Cate, D. M.; Reilly, T. H.; Volckens, J.; Henry, C. S.Analyst, 2016, 141, 1874-1887.
27. “Pesticide analysis using nanoceria-coated paper-based devices as a detection platform,” Nouanthavong, S.; Nacapricha, D.; Henry, C. S.; Sameenoi, Y., Analyst, 2016, 141, 1837-1846.
26. “Development of electrochemical paper-based glucose sensor using cellulose-4-aminophenylboronic acid-modified screen-printed carbon electrode,” Rungsawang, T.; Punrat, E.; Adkins, J.; Henry, C.; Chailapakul, O., Electroanalysis, 2016, 28, 462-468.
25. “Electrochemical detection in paper-based analytical devices using microwire electrodes,” Adkins, J. A.; Henry, C. S., Anal. Chim. Acta, 2015, 891, 247-254.
24. “Multiplexed paper analytical device for quantification of metals using distance-based detection,” Cate, D. M.; Noblitt, S. D.; Volckens, V.; Henry, C. S., Lab Chip, 2015, 15, 2808-2818.
23. “Electrochemical Paper-Based Microfluidic Devices,” Adkins, J.; Boehle, K.; Henry, C. S., Electrophoresis, 2015, 36, 1811-1824.
22. “Sensitive electrochemical sensor using a graphene–polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II),” Ruecha, N.; Rodthongkum, N.; Cate, D.M.; Volckens, J.; Chailapakul, O.; Henry, C.S., Anal. Chim. Acta, 2015, 874, 40-48.
21. “Recent Advances in Paper-Based Microfluidic Devices,” Cate, D. M.; Adkins, J. A.; Mettapoonpitak, J.; Henry, C. S., Anal. Chem., 2015, 87, 19-41.
20. “One-Step Polymer Screen-Printing for Microfluidic Paper-Based Analytical Device (mPAD) Fabrication,” Sameenoi, Y.; Nongkai, P. N.; Nouanthavong, S.; Henry, C. S.; Nacapricha, D., Analyst, 2014, 139, 6580-6588.
19. “Low cost, simple three dimensional electrochemical paper-based analytical device for determination of p-nitrophenol,” Santhiago, M.; Henry, C. S.; Kubota, C. S., Electrochim. Acta, 2014, 130, 771-777.
18. “Multilayer Paper-Based Device for Colorimetric and Electrochemical Quantification of Metals,” Rattanarat, P.; Dungchai, W.; Cate, D. M..; Volckens, J.; Chailapakul, O.; Henry, C. S., Anal. Chem., 2014, 86, 3555-3562.
17. “Rapid Detection of Transition Metals in Welding Fumes Using Paper-Based Analytical Devices,” Cate, D.; Nanthasurasak, P.; Riwkulkajorn, P.; L’Orange, C.; Henry, C. S.; Volckens, J., Ann. Occup. Health, 2014, 58, 413-423.
16. “Colorimetric Paper-based Detection of Escherichia coli, Salmonella spp., and Listeria monocytogenes from Large Volumes of Agricultural Water,” Adkins, J.; Gertsch, J.; Chanchand, J.; Perezmendez, A.; Coleman, S.; Osbodio, A.; Henry, C.; Goodridge, L.; Bisha, B. JOVE, 2014, Jun 9;(88). doi: 10.3791/51414.
15. “Determination of aerosol oxidative activity using silver nanoparticle aggregation on paper-based analytical devices,” Dungchai, W.; Sameenoi, Y.; Chailapakul, O.; Volckens, J.; Henry, C. S., Analyst, 2013,138, 6766-6773.
14. “A microfluidic paper-based analytical device for rapid quantification of particulate chromium,” Rattanarat, P.; Dungchai, W.; Cate, D. M.; Siangproh, W.; Volckens, J.; Chailapakul, O.; Henry, C. S., Anal. Chim. Acta, 2013, 800, 50-55.
13. “Electrochemical detection of glucose from whole blood using paper-based microfluidic devices,” Noiphung, J.; Songjaroen, T.; Dungchai, W.; Henry, C.; Chailapakul, O.; Laiwattanapaisal, W., Anal. Chim. Acta, 2013, 788, 39-45.
12. “Simple, Distance-Based Measurement for Paper Analytical Devices,” Cate, D. M.; Dungchai, W.; Cunningham, C. J.; Volckens, J.; Henry, C. S., Lab Chip, 2013, 2397-2404.
11. “Construction and Electrochemical Characterization of Microelectrodes for Improved Sensitivity in Paper-Based Analytical Devices,” Santhiago, M.; Wydallis, J.; Kubota, L. T.; Henry, C. S., Anal. Chem., 2013, 85, 5233-5239.
10. “Microfluidic Paper-Based Analytical Device for Aerosol Oxidative Activity,” Sameenoi, Y.; Panymeesamer, P.; Supalakorn, N.; Koehler, K.; Chailapakul, O.; Henry, C.; Volckens, J., Environ. Sci. Technol., 2013, 47, 932-940.
9. “Blood Separation on Microfluidic Paper-Based Analytical Devices,” Songjaroen, T.; Dungchai, W.; Chailapakul, O.; Henry, C. S.; Laiwattanapaisal, W., Lab Chip, 2012, 18, 3392-3398.
8. “Simple Silver Nanoparticle Colorimetric Sensing for Copper by Paper-Based Devices,” Ratnarathorn, N.; Chailapakul, O.; Henry, C. S.; Dungchai, W., Talanta, 2012, 99, 552-557.
7. “Sodium Dodecyl Sulfate Modified Electrochemical Paper-Based Analytical Device for Determination of Dopamine Levels in Biological Samples,” Rattanarat, P.; Dungchai, W.; Siangprob, W.; Chailapakul, O.; Henry, C. S., Anal. Chim. Acta, 2012, 744, 1-7.
6. “Microfluidic Paper-Based Analytical Device for Particulate Metals,” Mentele, M. M.; Cunningham, J. C; Koehler, K.; Volckens, J.; Henry, C. S., Anal. Chem., 2012, 84, 4474-4480.
5. “Development of a Paper-Based Analytical Device for Colorimetric Detection of Select Foodborne Pathogens,” Jokerst, J. C.; Adkins, J. A.; Bisha, B.; Mentele, M. M.; Goodridge, L. D.; Henry, C. S., Anal. Chem., 2012, 84, 2900-2907.
4. “A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing,” Dungchai, W.; Chailapakul, O.; Henry, C.S., Analyst, 2010, 136, 77-82.
3. “Use of multiple colorimetric indicators for paper-based microfluidic devices,” Dungchai, W.; Chailapakul, O.; Henry, C.S., Anal. Chim. Acta, 2010, 674, 227-233.
2. “Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron,” Apilux, A.; Dungchai, W.; Siangproh, W.; Praphairaksit, N.; Henry, C. S., Chailapakul, O., Anal. Chem., 2010, 82, 1727-1732.
1. “Electrochemical Detection for Paper-Based Microfluidics,” Dungchai, W.; Chailapakul, O.; Henry, C. S., Anal. Chem., 2009, 81, 5821-5826.
Back to Top
Electrochemistry
105. “Magnetophoretic slider assay for electrochemical detection of SARS-cov-2 nucleocapsid protein in nasal swab samples.” Fukana, N., Park, J., Silva Junior, G.J., Malsick, L.E., Gallichotte, E.N., Ebel, G.D., Geiss, B.J., Dandy, D.S., Bertotti, M., Nacapricha, D., Baldo, T.A., Henry, C.S. Biosensors and Bioelectronics , 2024, DOI:10.1016/j.bios.2024.117048
104. “Peptide nucleic acid probe-assisted paper-based electrochemical biosensor for multiplexed detection of respiratory viruses.” Lomae, A., Teekayupak, K., Preechakasedkit, P., Pasomsub, E., Ozer, T., Henry, C.S., Citterio, D., Vilaivan, T., Chailapakul, O., Ruecha, N. Talanta , 2024, DOI:10.1016/j.talanta.2024.126613
103. “Size-dependent electrochemistry of laser-induced graphene electrodes.” Wirojsaengthong, S., Chailapakul, O., Tangkijvanich, P., Henry, C.S., Puthongkham, P. Electrochimica Acta , 2024, DOI:10.1016/j.electacta.2024.144452
102. “Automated enzyme-linked immunosorbent assay for point-of-care COVID-19 testing.” Baldo, T.A., Ataide, V.N., Park, J., Panraksa, Y., Martinez, B., Anderson, L.B.R., Malsick, L.E., Gallichotte, E.N., Ebel, G.D., Geiss, B.J., Dandy, D.S., Paixão, T.R.L.C., Henry, C.S. Electrochimica Acta , 2024, DOI:10.1016/j.electacta.2024.144525
101. “Electrochemical immunosensor for the quantification of galectin-3 in saliva.” Pittman, T.W., Zhang, X., Punyadeera, C., Henry, C.S. Sensors and Actuators B: Chemical , 2024, DOI:10.1016/j.snb.2023.134811
100. “Improving design features and air bubble manipulation techniques for a single-step sandwich electrochemical ELISA incorporating commercial electrodes into capillary-flow driven immunoassay devices.” Kaewarsa, P., Schenkel, M.S., Rahn, K.L., Laiwattanapaisal, W., Henry, C.S. Analyst , 2024, DOI:10.1039/D3AN01704D
99. Next-generation Electrochemical Sensors for Detection of Respiratory Viruses. Akdag, A., Seyman, D., Henry, C.S., Sagdic, O., Lomae, A., Ruecha, N., Vilaivan, T., Chailapakul, O., Ozer, T. Sensors & Materials, 2023
98.“Characterization of Factors Affecting Stripping Voltammetry on Thermoplastic Electrodes.” McMahon, C.J., Martinez, B., & Henry, C.S. Journal of the Electrochemical Society, 2023, DOI:10.1149/1945-7111/acfa68
97. “Saliva-based microfluidic point-of-care diagnostic” Pittman, T.W., Desci, D.B., Punyadeera, C. and Henry, C.S. Theranostics, 2023, DOI: 10.7150/thno.78872
96. “Electrochemical Capillary Driven Immunoassay for Detection of SARS-CoV-2″ Clark, K.M., Schenkel, M.S., Pittman, T.W., Samper, I.C., Anderson, L.B.R., Khamcharoen, W., Elmegerhi, S., Perera, R., Siangproh, W., Kennan, A.J., Geiss, B.J., Dandy, D.S., and Henry, C.S. ACS Measurement Science Au, 2022, DOI: 10.1021/acsmeasuresciau.2c00037
95. “A smartphone-assisted hybrid sensor for simultaneous potentiometric and distance-based detection of electrolytes” Phoonsawat, K., Agir, I., Dungchai, W., Ozer, T., and Henry, C.S. Analytica Chimica Acta, 2022, DOI: 10.1016/j.aca.2022.340245
94. “Rapid prototyping of ion-selective electrodes using a low-cost 3D printed internet-of-things (IoT) controlled robot” Ozer, T., Agir, I., and Henry, C.S. Talanta, 2022, DOI: 10.1016/j.talanta.2022.123544
93. “Microfluidic-based ion-selective thermoplastic electrode array for point-of-care detection of potassium and sodium ions” Ozer, T. and Henry, C.S. Microchimica Acta, 2022, DOI: 10.1007/s00604-022-05264-y
92. “Electrochemical Immunoassay for the Detection of SARS-CoV-2 Nucleocapsid Protein in Nasopharyngeal Samples” Samper, I.C., McMahon, C.J., Schenkel, M.S., Clark, K.M., Khamcharoen, W., Anderson, L.B.R., Terry, J.S., Gallichotte, E.N., Ebel, G.D., Geiss, B.J., Dandy, D.S., and Henry, C.S. Anal. Chem., 2022, DOI: 10.1021/acs.analchem.1c04966
91. “An electrochemical paper-based analytical sensor for one-step latex protein detection.” Mettakoonpitak, J., Junkong, P., Saenonphut, A., Kwamman, T., Siripinyanond, A., and Henry, C.S. Analyst, 2022, DOI: 10.1039/D1AN02067F
90. “Electrogenerated Chemiluminescent Detection of Polyamines on a Microfluidic Device Using Micromolded Carbon Paste Microelectrodes.” Gross, E., Lowry, E., Schaffer, L., and Henry, C.S. Electroanalysis, 2022, DOI: 10.1002/elan.202100410
89. “Chemometric study of the Relative aggregation propensity of position 19 mutants of Aβ(1-42).” Zbacnik, N.J, Manning, M.C., and Henry, C.S. Curr Protein Pept Sci, 2022, DOI: 10.2174/1389203723666220128105334
88. “Simultaneous Analysis of Ascorbic Acid, Uric Acid, and Dopamine at Bare Polystyrene Thermoplastic Electrodes.” McCord, C., Summers, B., and Henry, C.S. ChemElectroChem, 2022, DOI: 10.1002/celc.202101600
87. “All-solid state potassium-selective sensor based on carbon black modified thermoplastic electrode” Ozer, T. and Henry, C.S. Electrochimica Acta, 2021, DOI: 10.1016/j.electacta.2021.139762
86.“User-friendly, magnetically sealed plug-and-play sensor module for online electrochemical sensing for fluidic devices” Roley, A., Clark, K., Richardson, A., Martinez, B., Tobet, S., Henry, C.S. Chem Rxiv, 2021, DOI: 10.26434/chemrxiv-2021-tth3p
85.“Thermoplastic Electrode (TPE)-based Enzymatic Glucose Sensor Using Polycaprolactone-graphite Composites” Clark, K.M. and Henry, C.S. Electronalysis, 2021, DOI: 10.1002/elan.202100446
84. “Disposable Passive Electrochemical Microfluidic Device for Diagnosis of Congenital Disorders of Glycosylation” Sierra, T., Henry, C.S., Crevillén, A.G., Escarpa, A. Analysis & Sensing, 2021, DOI: 10.1002/anse.202100038
83. “Electrochemical Capillary-Flow Immunoassay for Detecting Anti-SARS-CoV-2 Nucleocapsid Protein Antibodies at the Point of Care” Samper, I. C., Sánchez-Cano A., Khamcharoen, W., Jang, I., Siangproh, W., Baldrich, A., Geiss, B. J., Dandy, D. S., Henry, C. S. ACS Sensors, 2021, DOI: 10.1021/acssensors.1c01527
82. “A novel l-cysteine sensor using in-situ electropolymerization of l-cysteine: Potential to simple and selective detection” Khamcharoen, W., Henry, C. S., Siangproh, W. Talanta, 2021, DOI: 10.1016/j.talanta.2021.122983
81. “Thermoplastic Electrodes for Detection of Escherichia coli” Ozer, T.; McCord, C.; Geiss, B.; Dandy, D.; Henry, C.S. Journal of the Electrochemical Society, 2021. DOI:10.1149/1945-7111/abf77e
80.”Plug-and-play assembly of paper-based colorimetric and electrochemical devices for multiplexed detection of metals” Silva-Neto, H.A.; Cardoso, T.M.G; McMahon, C. J.; Sgobbi, L.F.; Henry, C.S; Coltro, W.K.T. Analyst, 2021. DOI: 10.1039/d1an00176k
79. “Thermoplastic electrodes as a new electrochemical platform coupled to microfluidic devices for tryptamine determination” Pradela-Filho, L.A., Araujo, D.A.G., Takeuchi, R.M., Santos, A.L., Henry, C.S. Analytica Chimica Acta, 2021, DOI: 10.1016/j.aca.2020.12.059
78. “SECM Investigation of Carbon Composite Thermoplastic Electrodes” Berg, K.E., Leroux, Y.R., Hapiot, P., Henry, C.S. Analytical Chemistry, 2020, DOI: 10.1021/acs.analchem.0c01041
77. “Electrochemical paper-based analytical device for multiplexed, point-of-care detection of cardiovascular disease biomarkers” Boonkaew, S., Jang, I., Noviana, E., Siangproh, W., Chailapakul, O., Henry, C.S. Sensors and Actuators B: Chemical, 2020, DOI: 10.1016/j.sng.2020.129336
76. “NFC-enabling Smartphone-based Portable Amperometric Immunosensor for Hepatitis B Virus Detection” Teengam, P., Siangproh, W., Tontisirin, S., Jiraseree-amornkun, A., Chuaypen, N., Tangkijvanich, P., Henry, C.S., Ngamrojanavanich, N., Chailapakul, O. Sensors and Actuators B: Chemical, 2020, DOI: 10.1016/j.snb.2020.12885
75. “Exploring carbon particle type and plasma treatment to improve electrochemical properties of stencil-printed carbon electrodes” Kava, A.A., Henry, C.S. Talanta, 2020, DOI: 10.1016/j.talanta.2020.121553
74. “Micromolded Carbon Paste Microelectrodes for Electrogenerated Chemiluminescent Detection on Microfluidic Devices” Gross, E.M., Porter, L.R., Stark, N.R., Lowry, E.R., Schaffer, L.V., Maddipati, S.S., Hoyt, D.J., Stombaugh, S.E., Peila, S.R., Henry, C.S. ChemElectroChem, 2020, DOI: 10.1002/celc.202000366
73. “Simultaneous Electrochemical Detection in Paper-Based Analytical Devices” Noviana, E., Henry, C.S. Current Opinion in Electrochemistry. 2020, DOI: 10.1016/j.coelec.2020.02.013
72. “Rapid Analysis in Continuous Flow Electrochemical Paper-Based Analytical Devices” Pradela-Filho, L.A., Noviana, E., Araujo, D., Takeuchi, R., Santos, A., Henry, C.S. ACS Sensors. 2020, DOI:10.1021/acssensors.9b02298
71. “Disposable Glassy Carbon Stencil Printed Electrodes for Trace Detection of Cadmium and Lead” Kava, A.A., Beardsley, C., Hofstetter, J., Henry, C.S. Analytica Chimica Acta, 2019, DOI: 10.1016/j.aca.2019.12.047
70. “Janus Electrochemical Paper-Based Analytical Devices for Metals Detection in Aerosol Samples” Mettakoonpiak, J., Volckens, J., Henry, C.S. Analytical Chemistry, 2019, DOI: 10.1021/acs.analchem.9b04632
69. “High-throughput, semi-automated dithiothreitol (DTT) assays for oxidative potential of fine particular matter” Berg, K.E., Clark, K.M., Li, X., Carter, E.M., Volckens, J., Henry, C.S. Atmospheric Environment, 2019, DOI: 10.1016/j.atmosenv.2019.117132
68. “Anodic stripping voltammetric determination of lead and cadmium with stencil-printed transparency electrodes” Alvarez-Martos, I. Henry, C.S., Abedul, M.T.F, Laboratory methods in Dynamic Electroanalysis, 2020, DOI: 10.1016/B978-0-12-815932-3.00004-8
67. “Increasing Applications of Graphite Thermoplastic Electrodes with Aryl Diazonium Grafting” Berg, K.E., Leroux, Y.R., Hapiot, P., Henry, C.S., ChemElectroChem, 2019, DOi: 10.1002/celc.201901048
66. “Polycaprolactone-enabled sealing and carbon composite electrode integration into electrochemical microfluidics” Klunder, K.J, Clark, K.M., McCord, C., Berg, K.E., Minteer, S.D., Henry, C.S. Lab on a Chip, 2019, DOI: 10.1039/C9LC00417C
65. “A nuclease protection ELISA assay for colorimetric and electrochemical detection of nucleic acids” Filer, J.E., Channon, R.b, Henry, C.S., Geiss, B.J. Analytical Methods, 2019, DOI:10.1039/C8AY02729C
64. “An Ultra-sensitive Capacitive Microwire Sensor for Pathogen-Specific Serum Antibody Responses” Wang, L., Filer, J.E., Lorenz, M.M., Henry, C.S., Dandy, D.S., Geiss, B.J. Biosensors and Bioelectronics, 2019, Accepted Manuscript, DOI:10.1016/j.bios.2019.01.040
63. “Janus Electrochemistry: Simultaneous Electrochemical Detection at Multiple Working Conditions in a Paper-based Analytical Device” Nantaphol, S., Kava, A.A., Channon, R.B., Kondo, T., Siangproh, W., Chailapakul, O., Henry, C.S. Analytica Chimica Acta, 2019, Accepted Manuscript, DOI:10.1016/j.aca.2019.01.026
62.”Electrochemical Dithiothreitol Assay for Large-Scale Particulate Matter Studies” Berg, K.E., Turner, L.R., Benka-Coker, M.L., Rajkumar, S., Young, B.N., Peel, J.L., Clark, M.L., Volckens, J., Henry, C.S. Aerosol Science and Technology, 2019, Accepted Manuscript, DOI: 10.1080/02786826.2018.1560391
61. “Thermoplastic Electrode Arrays in Electrochemical Paper-Based Analytical Devices” Noviana, E., Klunder, K.J., Channon, R.B., Henry, C.S. Analytical Chemistry. 2019, Accepted Manuscript, DOI: 10.1021/acs.analchem.8b05218
60. “Electrochemical impedance-based DNA sensor using pyrrolidinyl peptide nucleic acids for tuberculosis detection” Teengam, P., Siangproh, W., Tuantranont, A., Vilaivan, T., Chailapakul, O., Henry, C. S., Anal. Chim. Acta, 2018, Accepted Manuscript, DOI: 10.1016/j.aca.2018.07.045
59. “Detection of Analgesics and Sedation Drugs in Whiskey using Electrochemical Paper‐Based Analytical Devices” Dias, A. A., Cardoso, T. M. G., Chagas, C. L. S., Oliveira, V. X. G., Munoz, R. A. A., Henry, C. S., Santana, M. H. P., Paixão, T. R. L. C., Coltro, W. K. T., Electroanalysis, 2018, DOI: https://doi.org/10.1002/elan.201800308
58. “Development of an Electrochemical Paper-Based Analytical Device for Trace Detection of Virus Particles” Channon, R. B., Yang, Y., Feibelman, K. M., Geiss, B. J., Dandy, D. S., Henry, C. S., Anal. Chem., 2018, Accepted manuscript, DOI: 10.1021/acs.analchem.8b02042
57. “Electrochemical Biosensor System Using A CMOS Microelectrode Array Provides High Spatially and Temporally Resolved Images“, Tedjo, W.; Nejad, J.; Feeny, R.; Yang, L.; Henry, C. S.; Tobet, S.; Chen, T., Biosens. Bioelectron., 2018, Accepted Manuscript DOI: https://doi.org/10.1016/j.bios.2018.04.009
56. “Rapid Flow in Multilayer Microfluidic Paper-Based Analytical Devices” Channon, R. B.; Nguyen, M. P.; Scorzelli, A. G.; Henry, E. M.; Volckens, J.; Dandy, D. S.; Henry, C. S., Lab Chip, 2018, 18, 793-802
55. “Highly transparent tetraaminophthalocyanine polymer films for DSSC cathodes” Klunder, K. J.; Elliot. M. C.; Henry, C. S.; J. Mater. Chem. A, 2018, Advance Article, DOI: 10.1039/C7TA10167H
54. “Low-cost reusable sensor for cobalt and nickel detection in aerosols using adsorptive cathodic square-wave stripping voltammetry” Mettakoonpitak, J.; Miller-Lionberg, D.; Reilly, T.; Volckens, J.; Henry, C. S., J. Electroanal. Chem., 2017, 805, 75-82.
53. “Patternable Solvent-Processed Thermoplastic Graphite Electrodes,” Klunder, K.; Nilsson, Z.; Sambur, J.; Henry, C. S., J. Am. Chem. Soc., 2017, 139 (36), 12623–12631.
52. “Point-of-Need Simultaneous Electrochemical Detection of Lead and Cadmium Using Low-Cost Stencil-Printed Transparency Electrodes,” Martin-Yerga, D.; Alvarez-Martex, I.; Blanco-Lopez, M. C.; Henry, C. S.; Fernandez-Abedul, M. T., Anal. Chim. Acta, 2017, 981, 24-33.
51. “Boron Doped Diamond Paste Electrodes for Microfluidic Paper-Based Analytical Devices,” Nantaphol, S.; Channon, R. B.; Kondo, T.; Siangproh, W.; Chailapakul, O.; Henry, C. S. Anal. Chem., 2017, 89, 4100-4107.
50. “Colorimetric and Electrochemical Bacteria Detection Using Printed Paper- and Transparency-Based Analytic Devices,” Adkins, J. A.; Boehle, K.; Friend, C.; Chamberlain, B.; Bisha, B.; Henry, C. S. Anal. Chem., 2017, 89, 3613-3621.
49. “Electrochemical paper-based peptide nucleic acid biosensor for detecting human pipillomavirus,” Teengam, P.; Siangproh, W.; Tuantranont, A.; Henry, C. S.; Vilaivan, T; Chailapakul, O. Anal. Chim. Acta, 2017, 952, 32-40.
48. “AgNP/Bi/Nafion‐modified Disposable Electrodes for Sensitive Zn (II), Cd (II), and Pb (II) Detection in Aerosol Samples,” Mettakoonpitak, J.; Mehaffy, J., Volckens, J.; Henry, C. S. Electroanalysis, 2016, 28, 1-11.
47. “Development of a Quasi-Steady Flow Electrochemical Paper-Based Analytical Device,” Adkins, J.A.; Noviana, E.; Henry, C. S. Anal. Chem., 2016, 88, 10639-10647.
46. “Electrochemistry on Paper‐based Analytical Devices: A Review,” Mettakoonpitak, J.; Boehle, K.; Nantaphol, S.; Teengam, P.; Adkins, J.A.; Srisa-Art, M; Henry, C. S. Electroanalysis, 2016, 28, 1420-1436.
45. “Graphene-polyaniline modified electrochemical droplet-based microfluidic sensor for high-throughput determination of 4-aminophenol,” Rattanarat, P.; Suea-Ngam, A.; Ruecha, N.; Siangproh, W; Henry, C. S.; Srisa-Art, M.; Chailapakul, O. Anal. Chim. Acta, 2016, 925, 51-60.
44. “Label-free detection of C-reactive protein using an electrochemical DNA immunoassay,” Songjaroen, T; Feeny, R. M.; Mensack, M. M.; Laiwattanapaisal, W.; Henry, C. S., Sensing and Bio-Sensing Research, 2016, 8, 14-19.
43. “Manganese Detection Using Stencil-Printed Carbon Ink Electrodes on Transparency Film,” Berg, K. E.; Adkins, J. Al; Boyle, S. E.; Henry, C. S., Electroanalysis, 2016, 28, 679-684.
42. “Spatiotemporal norepinephrine mapping using a high-density CMOS microelectrode array,” Wydallis, J. B.; Feeny, R. M.; Wilson, W.; Kern, T.; Chen, T.; Tobet, S.; Reynolds, M. M.; Henry, C. S., Lab Chip, 2015, 15, 4075-4082.
41. “Development of electrochemical paper-based glucose sensor using cellulose-4-aminophenylboronic acid-modified screen-printed carbon electrode,” Rungsawang, T.; Punrat, E.; Adkins, J.; Henry, C.; Chailapakul, O., Electroanalysis, 2016, 28, 462-468.
40. “Electrochemical detection in paper-based analytical devices using microwire electrodes,” Adkins, J. A.; Henry, C. S., Anal. Chim. Acta, 2015, 891, 247-254.
39. “Electrochemical Paper-Based Microfluidic Devices,” Adkins, J.; Boehle, K.; Henry, C. S., Electrophoresis, 2015, 36, 1811-1824.
38. “Sensitive electrochemical sensor using a graphene–polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II),” Ruecha, N.; Rodthongkum, N.; Cate, D.M.; Volckens, J.; Chailapakul, O.; Henry, C.S., Anal. Chim. Acta, 2015, 874, 40-48.
37. “Analysis of Nitric Oxide from Chemical Donors Using CMOS Platinum Microelectrodes,” Feeny, R. M.; Wydallis, J. B.; Lantvit, S.; Chen, T.; Reynolds, M. M.; Tobet, S.; Henry, C. S., Electroanalysis, 2015, 27, 1104-1109.
36. “A simple microfluidic electrochemical HPLC detector for quantifying Fenton reactivity from welding fumes,” Pluangklang, T.; Wydallis, J. B.; Cate, D. M.; Nacapricha, D.; Henry, C. S., Anal. Methods, 2014, 6, 8180-8186.
35. “Low cost, simple three dimensional electrochemical paper-based analytical device for determination of p-nitrophenol,” Santhiago, M.; Henry, C. S.; Kubota, C. S., Electrochim. Acta, 2014, 130, 771-777.
34. “Multilayer Paper-Based Device for Colorimetric and Electrochemical Quantification of Metals,” Rattanarat, P.; Dungchai, W.; Cate, D. M..; Volckens, J.; Chailapakul, O.; Henry, C. S., Anal. Chem., 2014, 86, 3555-3562.
33. “Laboratory Evaluation of a Microfluidic Electrochemical Sensor for Aerosol Oxidative Load,” Koehler, K.; Shapiro, J.; Sameenoi, Y.; Henry, C. S.; Volckens, J., Aerosol Sci. Tech., 2014, 48, 489-497.
32. “Electrochemical detection of glucose from whole blood using paper-based microfluidic devices,” Noiphung, J.; Songjaroen, T.; Dungchai, W.; Henry, C.; Chailapakul, O.; Laiwattanapaisal, W., Anal. Chim. Acta, 2013, 788, 39-45.
31. “Construction and Electrochemical Characterization of Microelectrodes for Improved Sensitivity in Paper-Based Analytical Devices,” Santhiago, M.; Wydallis, J.; Kubota, L. T.; Henry, C. S., Anal. Chem., 2013, 85, 5233-5239.
30. “Spatially resolved electrochemical sensing of chemical gradients,” Mensack, M.; Wydallis, J.; Lynn, N.; Dandy, D.; Henry, C., Lab Chip, 2013, 13, 208-211.
29. “Microfluidic Electrochemical Sensor for On-Line Monitoring of Aerosol Oxidative Activity,” Sameenoi, Y.; Koehler, K.; Shapiro, J.; Boonsong, K.; Sun, Y.; Collett, Jr., J.; Volckens, J.; Henry, C. S., J. Am. Chem. Soc., 2012, 134, 10562-10568.
28. “Sodium Dodecyl Sulfate Modified Electrochemical Paper-Based Analytical Device for Determination of Dopamine Levels in Biological Samples,” Rattanarat, P.; Dungchai, W.; Siangprob, W.; Chailapakul, O.; Henry, C. S., Anal. Chim. Acta, 2012, 744, 1-7.
27. “Mapping Spatiotemporal Molecular Distributions Using a Microfluidic Array,” Lynn, N. S.; Tobet, S.; Henry, C. S.; Dandy, D. S., Anal. Chem., 2012, 84, 1360-1366.
26. “Characterization of Novel Microelectrode Geometries for Detection of Neurotransmitters,” Pettine, W.; Jibson, M.; Chen, T.; Tobet, S.; Nikkel, P.; Henry, C. S., IEEE Sensors, 2011, 12, 1187-1192.
25. “Poly(dimethysiloxane) Cross-linked Carbon Paste Electrodes for Microfluidic Electrochemical Sensing,” Sameenoi, Y.; Mensack, M. M.; Boonsong, K.; Ewing, R.; Dungchai, W.; Chailapakul, O.; Cropek, D. M.; Henry, C. S., Analyst, 2011, 136, 3177-3184.
24. “Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron,” Apilux, A.; Dungchai, W.; Siangproh, W.; Praphairaksit, N.; Henry, C. S., Chailapakul, O., Anal. Chem., 2010, 82, 1727-1732.
23. “Improving MCE with electrochemical detection using a bubble cell and sample stacking techniques,” Guan, Q.; Henry, C. S., Electrophoresis, 2009, 30, 3339-3346.
22. “Electrochemical Detection for Paper-Based Microfluidics,” Dungchai, W.; Chailapakul, O.; Henry, C. S., Anal. Chem., 2009, 81, 5821-5826.
21. “Photopatternable carbon electrodes for chip-based electrochemical detection,” Gonzalez, C. D.; Cropek, D. M.; Henry, C. S., Electroanalysis, 2009, 21, 2171-2174.
20. “Electrode Array Detector for Microchip Capillary Electrophoresis,” Holcomb, R.; Kraly, J.; Henry, C. S., Analyst, 2009, 134, 486-492.
19. “Chaotic advection produced via transverse electrokinetic effects in a planar microchannel,” Lynn, N. S.; Dandy, D. S.; Henry, C. S., Microfluid. Nanofluid., 2008, 5, 493-505.
18. “Simplified current decoupler for microchip capillary electrophoresis with electrochemical and pulsed amperometric detection,” Vickers, J. A.; Henry, C. S., Electrophoresis, 2005, 26, (24), 4641-4647.
17. “Coupling Capillary Electrophoresis with Pulsed Electrochemical Detection,” Garcia, C. D.; Henry, C. S., Electroanalysis, 2005, 17, 1125-1131.
16. “Comparison of surfactants for dynamic surface modification of poly(dimethylsiloxane) microchips,” Garcia, C. D.; Dressen, B. M.; Henderson, A.; Henry, C. S., Electrophoresis, 2005, 26, 703-709.
15. “Comparison of pulsed electrochemical detection modes coupled with microchip capillary electrophoresis,” Garcia, C. D.; Henry, C. S., Electroanalysis, 2005, 17, 223-230.
14. “Determination of levoglucosan from smoke samples using microchip capillary electrophoresis with pulsed amperometric detection,” Garcia, C. D.; Engling, G.; Herckes, P.; Collett, J. L. Jr.; Henry, C. S., Environ. Sci. Technol., 2005, 39, 618-623.
13. “Enhanced determination of glucose by microchip electrophoresis with pulsed amperometric detection,” Garcia, C. D.; Henry, C. S., Anal. Chim. Acta, 2004, 508, 1-9.
12. “Direct detection of renal function markers using microchip CE with pulsed electrochemical detection,” Garcia, C. D.; Henry, C. S., Analyst, 2004, 129, 579-584.
11. “Simple and sensitive electrode design for microchip electrophoresis/electrochemistry,” Liu, Y.; Vickers, J. A.; Henry, C. S., Anal. Chem., 2004, 76, 1513-1517.
10. “Direct determination of carbohydrates, amino acids, and antibiotics by microchip electrophoresis with pulsed amperometric detection,” Garcia, C. D.; Henry, C. S., Anal. Chem., 2003, 75, 4778-4783.
9. “Pulsed amperometric detection of carbohydrates on an electrophoretic microchip,” Fanguy, J. C.; Henry, C. S., Analyst, 2002, 127, 1021-1023.
8. “The analysis of uric acid in urine using microchip capillary electrophoresis with electrochemical detection,” Fanguy, J. C.; Henry, C. S., Electrophoresis, 2002, 23, 767-773.
7. “Conductivity detection for monitoring mixing reactions in microfluidic devices,” Liu, Y.; Wipf, D. O.; Henry, C. S., Analyst, 2001, 126, 1248-1251.
6. “Dual-Electrode Electrochemical Detection for Poly(dimethylsiloxane)-Fabricated Capillary Electrophoresis Microchips,” Martin, R. S.; Gawron, A. J.; Lunte, S. M.; Henry, C. S., Anal. Chem., 2000, 72, 3196-3202.
5. “Microcavities and micropores for electrochemical analysis,” Holsten, N. D.; Bowen, B. P.; Vandaveer, W. R. I. V.; Henry, C. S.; Fritsch, I.; Lenihan, T. G., Proc. Electrochem. Soc., 1999, 99, 67-81.
4. “Microfabricated Recessed Microdisk Electrodes: Characterization in Static and Convective Solutions,” Henry, C. S.; Fritsch, I., Anal. Chem., 1999, 71, 550-556.
3. “Ceramic microchips for capillary electrophoresis-electrochemistry,” Henry C. S.; Zhong, M;, Lunte, S. M.; Kim, M.; Bau, H.; Santiago, J. J., Anal. Comm., 1999, 36, 305-307.
2. “Microcavities containing individually addressable recessed microdisk and tubular nanoband electrodes,” Henry, C. S.; Fritsch, I., J. Electrochem. Soc., 1999, 146, 3367-3373.
1. “Formation and Characterization of Supported Hexadecanethiol/Dimyristoyl Phosphatidylcholine Hybrid Bilayers Containing Gramicidin D,” Henry, C. S.; Fritsch, I., Langmuir, 1998, 14, 5850-5857.
Environmental Analysis
56. “Citizen-Based Water Quality Monitoring: Field Testing a User-Friendly Sensor for Phosphate Detection in Global Surface Waters.” Aryal, P., Hefner, C.E., Martinez, B., Brack, E., Henry, C.S. Analytical Chemistry , 2024, DOI:10.1021/acs.analchem.4c02123
55. “Fill, Fold, Photo: Preconcentration and Multiplex Detection of Trace Level Heavy Metals in Water.” Aryal, P., Boes, J., Brack, E., Alexander, T., Henry, C.S. ACS Sensors , 2024, DOI:10.1021/acssensors.4c01708
54. “Smartphone-enabled green anthocyanin sensor for Fe(III) sensing on paper using capillary-driven microfluidics.” Aryal, P., Indrianingsih, A.W., Henry, C.S. Green Analytical Chemistry , 2024, DOI:10.1016/j.greeac.2023.100091
53. “Microfluidics in environmental analysis: advancements, challenges, and future prospects for rapid and efficient monitoring.” Aryal, P., Hefner, C., Martinez, B., Henry, C.S. Lab on a Chip , 2024, DOI:10.1039/D3LC00871A
52. “The use of Clitoria ternatea as sustainable detection tool for Ni (II) and Cu (II) ions in simple paper-based analytical device.” Indrianingsih, A.W., Aryal, P., Henry, C.S. IOP Conference Series: Earth and Environmental Science , 2023, DOI:10.1088/1755-1315/1267/1/012003
51. “Colorimetric Paper-Based Analytical Device for Perfluorooctanesulfonate Detection” Menger, R., Beck, J.,Borch, T., and Henry, C.S. ACS EST Water, 2022, DOI: 10.1021/acsestwater.1c00356
50. “High spatial resolution fluorescence imagery for optimized pest management within a Huanglongbing-infected citrus grove” Menger, R., Rehberg, R., Trivedi, P., Henry, C. S., Borch, T. Phytopathology, 2021, DOI: 10.1094/PHYTO-05-21-0211-FI.
49. “Plug-and-play assembly of paper-based colorimetric and electrochemical devices for multiplexed detection of metals” Silva-Neto, H.A.; Cardoso, T.M.G; McMahon, C. J.; Sgobbi, L.F.; Henry, C.S; Coltro, W.K.T. Analyst, 2021. DOI: 10.1039/d1an00176k
48. “Sensors for Detecting Per- and Polyfluoroalkyl Substances (PFAS): A Critical Review of Development Challenges, Current Sensors, and Commercialization Obstacles” Menger, R.F., Funk, E., Henry, C.S., Borch, T. Chemical Engineering Journal, 2021, DOI: 10.1016/j.cej.2021.129133
47. “Highly selective simultaneous Cu(II), Co(II), Ni(II), Hg(II), Mn(II) determination in water samples on microfluidic paper-based analytical devices” Kamnoet, P. Aeungmaitrepirom, W., Menger, R.F., Henry, C.S. Analyst, 2021, DOI: 10.1039/D0An02200D
46. “Dual sample Preconcentration for Simultaneous Quantification of Metal Ions Using Electrochemical and Colorimetric Assays” Ninwong, B., Ratnarathorn, N., Henry, C.S., Mace, C.R., Dungchai, W ACS Sensors, 2020, DOI: 10.1021/acssensors.0c01793
45. “Fluorescent Dye Paper-Based Method for Assessment of Pesticide Coverage on leaves and Trees: A Citrus Grove Case Study” Menger, R.F., Bontha, M. Beveridge, J.R., Borch, T., Henry, C.S. Journal of Agricultural and Food Chemistry, 2020, DOI: 10.1021/acs.jafc.0c01835
44. “Sensitive distance-based paper-based quantification of mercury ions using carbon nanodots and heating-based preconcentration” Ninwong, B., Sangkaew, P., Hapa, P., Ratnarathorn, N., Menger, R.F., Henry, C.S., Dunchai, W. RSC Advances. 2020, 10, 9884.
43. “Dynamic classification of personal microenvironments using a suite of wearable, low-cost sensors” Quinn, C., Anderson, B.G., Magzamen, S., Herny, C.S., Volckens, J. Journal of Exposure Science & Environmental Epidemiology. 2020, DOI: 10.1038/s41370-019-019802
42. “Disposable Glassy Carbon Stencil Printed Electrodes for Trace Detection of Cadmium and Lead” Kava, A.A., Beardsley, C., Hofstetter, J., Henry, C.S. Analytica Chimica Acta, 2019, DOI: 10.1016/j.aca.2019.12.047
41. “High-throughput, semi-automated dithiothreitol (DTT) assays for oxidative potential of fine particular matter” Berg, K.E., Clark, K.M., Li, X., Carter, E.M., Volckens, J., Henry, C.S. Atmospheric Environment, 2019, DOI: 10.1016/j.atmosenv.2019.117132
40. “Read-by-eye quantification of aluminum (III) in distance-based microfluidic paper-based analytical devices” Nguyen, M.P., Kelly, S. P., Wydallis, J.B., Henry, C.S. Analytica Chimica Acta, 2019, DOI: 10.1016/j.aca.2019.11.052
39. “Anodic stripping voltammetric determination fo lead and cadmium with stencil-printed transparency electrodes” Alvarez-Martos, I. Henry, C.S., Abedul, M.T.F, Laboratory methods in Dynamic Electroanalysis, 2020, DOI: 10.1016/B978-0-12-815932-3.00004-8
38. “Oxidative potential of diesel exhaust particles: role of fuel, engine load, and emissions control” Sharma, N. Vanderheyden, C. Henry, C.S., Volckens, J., Jathar, S.H. Environmental Science: Processes & Impacts, 2019, DOI:10.1039/c8em00571k
37. “Electrochemical Dithiothreitol Assay for Large-Scale Particulate Matter Studies” Berg, K.E., Turner, L.R., Benka-Coker, M.L., Rajkumar, S., Young, B.N., Peel, J.L., Clark, M.L., Volckens, J., Henry, C.S. Aerosol Science and Technology, 2019, DOI: 10.1080/02786826.2018.1560391
36. “Distance–based Paper Sensor for Determination of Chloride ion Using Silver Nanoparticles” Phoonsawat, K., Ratnarathorn, N., Henry C. S., Dungchai, W., Analyst, 2018, DOI: 10.1039/C8AN00670A
35. “Quantitative Colorimetric Paper Analytical Devices Based on Radial Distance Measurements for Aqueous Metal Determination” Hofstetter, J., Wydallis, J., Neymark, G., Thomas, T., Harrington, J., Henry, C. S., Analyst, 2018, DOI: 10.1039/C8AN00632F
34.”Solid-Phase Extraction Coupled to a Paper-Based Technique for Trace Copper in Drinking Water” Quinn, C. W.; Cate, D.; Miller-Lionberg, D.; Reilly, T.; Volckens, J.; Henry, C. S., Environ. Sci. Technol. 2018, DOI: 10.1021/acs.est.7b05436
33. “Rapid Flow in Multilayer Microfluidic Paper-Based Analytical Devices” Channon, R. B.; Nguyen, M. P.; Scorzelli, A. G.; Henry, E. M.; Volckens, J.; Dandy, D. S.; Henry, C. S., Lab Chip, 2018, 18, 793-802
32. “Low-cost reusable sensor for cobalt and nickel detection in aerosols using adsorptive cathodic square-wave stripping voltammetry” Mettakoonpitak, J.; Miller-Lionberg, D.; Reilly, T.; Volckens, J.; Henry, C. S., J. Electroanal. Chem., 2017, 805, 75-82.
31. “A Selective Distance-Based Paper Analytical Device for Copper (II) Determination Using a Porphyrin Derivative,” Pratiwi, R.; Nguyen, M. P.; Ibrahim, S.; Yoshioka, N.; Henry, C. S.; Tjahjono, D. H. Talanta, 2017, 174, 493-499.
30. “Point-of-Need Simultaneous Electrochemical Detection of Lead and Cadmium Using Low-Cost Stencil-Printed Transparency Electrodes,” Martin-Yerga, D.; Alvarez-Martex, I.; Blanco-Lopez, M. C.; Henry, C. S.; Fernandez-Abedul, M. T. Anal. Chim. Acta, 2017, 981, 24-33.
29. “Utilizing Paper-Based Devices for Antimicrobial Resistant Bacteria Detection,” Boehle, K.E.; Gilliand, J.; Wheeldon, C.R.; Adkins, J.A.; Geiss, B.J.; Ryan, E. P.; Henry, C. S. Angew. Chem. Int. Ed., 2017, 56 (24), 6886-6890.
28. “Boron Doped Diamond Paste Electrodes for Microfluidic Paper-Based Analytical Devices,” Nantaphol, S.; Channon, R. B.; Kondo, T.; Siangproh, W.; Chailapakul, O.; Henry, C. S. Anal. Chem., 2017, 89, 4100-4107.
27. “Paper-based microfluidics for experimental design: screening masking agents for simulataneous determination of Mn (II) and Co (II),” Meredith, N.A.; Volckens, J.; Henry, C. S. Anal. Meth., 2017, 9, 534-540.
26. “AgNP/Bi/Nafion‐modified Disposable Electrodes for Sensitive Zn (II), Cd (II), and Pb (II) Detection in Aerosol Samples,” Mettakoonpitak, J.; Mehaffy, J., Volckens, J.; Henry, C. S. Electroanalysis, 2016, 28, 1-11.
25. “Development and evaluation of an ultrasonic personal aerosol sampler,” Volckens, J.; Quinn, C.; Leith, D.; Mehaffy, J.; Henry, C. S.; Miller-Lionberg, D. Indoor Air, 2016, 1-8.
24. “Paper-based analytical devices for environmental analysis,” Meredith, N. A.; Quinn, C.; Cate, D. M.; Reilly, T. H.; Volckens, J.; Henry, C. S.Analyst, 2016, 141, 1874-1887.
23. “Pesticide analysis using nanoceria-coated paper-based devices as a detection platform,” Nouanthavong, S.; Nacapricha, D.; Henry, C. S.; Sameenoi, Y., Analyst, 2016, 141, 1837-1846.
22. “Multiplexed paper analytical device for quantification of metals using distance-based detection,” Cate, D. M.; Noblitt, S. D.; Volckens, V.; Henry, C. S., Lab Chip, 2015, 15, 2808-2818.
21. “Sensitive electrochemical sensor using a graphene–polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II),” Ruecha, N.; Rodthongkum, N.; Cate, D.M.; Volckens, J.; Chailapakul, O.; Henry, C.S., Anal. Chim. Acta, 2015, 874, 40-48.
20. “Low cost, simple three dimensional electrochemical paper-based analytical device for determination of p-nitrophenol,” Santhiago, M.; Henry, C. S.; Kubota, C. S., Electrochim. Acta, 2014, 130, 771-777.
19. “Multilayer Paper-Based Device for Colorimetric and Electrochemical Quantification of Metals,” Rattanarat, P.; Dungchai, W.; Cate, D. M..; Volckens, J.; Chailapakul, O.; Henry, C. S., Anal. Chem., 2014, 86, 3555-3562.
18. “Laboratory Evaluation of a Microfluidic Electrochemical Sensor for Aerosol Oxidative Load,” Koehler, K.; Shapiro, J.; Sameenoi, Y.; Henry, C. S.; Volckens, J., Aerosol Sci. Tech., 2014, 48, 489-497.
17. “Rapid Detection of Transition Metals in Welding Fumes Using Paper-Based Analytical Devices,” Cate, D.; Nanthasurasak, P.; Riwkulkajorn, P.; L’Orange, C.; Henry, C. S.; Volckens, J., Ann. Occup. Health, 2014, 58, 413-423.
16. “Colorimetric Paper-based Detection of Escherichia coli, Salmonella spp., and Listeria monocytogenes from Large Volumes of Agricultural Water,” Adkins, J.; Gertsch, J.; Chanchand, J.; Perezmendez, A.; Coleman, S.; Osbodio, A.; Henry, C.; Goodridge, L.; Bisha, B. JOVE, 2014, Jun 9;(88). doi: 10.3791/51414.
15. “Determination of aerosol oxidative activity using silver nanoparticle aggregation on paper-based analytical devices,” Dungchai, W.; Sameenoi, Y.; Chailapakul, O.; Volckens, J.; Henry, C. S., Analyst, 2013,138, 6766-6773.
14. “A microfluidic paper-based analytical device for rapid quantification of particulate chromium,” Rattanarat, P.; Dungchai, W.; Cate, D. M.; Siangproh, W.; Volckens, J.; Chailapakul, O.; Henry, C. S., Anal. Chim. Acta, 2013, 800, 50-55.
13. “Simple, Distance-Based Measurement for Paper Analytical Devices,” Cate, D. M.; Dungchai, W.; Cunningham, C. J.; Volckens, J.; Henry, C. S., Lab Chip, 2013, 2397-2404.
12. “Microfluidic Paper-Based Analytical Device for Aerosol Oxidative Activity,” Sameenoi, Y.; Panymeesamer, P.; Supalakorn, N.; Koehler, K.; Chailapakul, O.; Henry, C.; Volckens, J., Environ. Sci. Technol., 2013, 47, 932-940.
11. “Microfluidic Electrochemical Sensor for On-Line Monitoring of Aerosol Oxidative Activity,” Sameenoi, Y.; Koehler, K.; Shapiro, J.; Boonsong, K.; Sun, Y.; Collett, Jr., J.; Volckens, J.; Henry, C. S., J. Am. Chem. Soc., 2012, 134, 10562-10568.
10. “Simple Silver Nanoparticle Colorimetric Sensing for Copper by Paper-Based Devices,” Ratnarathorn, N.; Chailapakul, O.; Henry, C. S.; Dungchai, W., Talanta, 2012, 99, 552-557.
9. “Microfluidic Paper-Based Analytical Device for Particulate Metals,” Mentele, M. M.; Cunningham, J. C; Koehler, K.; Volckens, J.; Henry, C. S., Anal. Chem., 2012, 84, 4474-4480.
8. “Advances in Microfluidics for Environmental Analysis,” Gertsch, J.; Emory, J.; Henry, C. S., Analyst, 2012, 137, 24-34.
7. “Rapid Analysis of Perchlorate in Drinking Water at Parts per Billion Levels Using Microchip Electrophoresis,” Gertsch, J.; Noblitt, S. D.; Cropek, D. M.; Henry, C. S Anal. Chem., 2010, 82, 3426-3429.
6. “Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron,” Apilux, A.; Dungchai, W.; Siangproh, W.; Praphairaksit, N.; Henry, C. S., Chailapakul, O., Anal. Chem., 2010, 82, 1727-1732.
5. “Interfacing microchip electrophoresis to a growth tube particle collector for semi-continuous monitoring of aerosol composition,” Noblitt, S. D.; Lewis, G. S.; Liu, Y.; Hering, S. V.; Collett, Jr, J. L.; Henry, C. S., Anal. Chem., 2009, 81, 10029-10037.
4. “High-sensitivity microchip electrophoresis determination of inorganic anions and oxalate in atmospheric aerosols with adjustable selectivity and conductivity detection,” Noblitt, S. D.; Henry, C. S., J. Chromatogr. A, 2009, 1216, 1503-1510.
3. “Separation of common organic and inorganic anions in atmospheric aerosols using a piperazine buffer and capillary electrophoresis,” Noblitt, S. D.; Mazzoleni, L. R.; Collett, J. L.; Hering, S. V.; Henry, C. S., J. Chromatogr. A, 2007, 1154, 400-406.
2. “Analysis of anions in ambient aerosols by microchip capillary electrophoresis,” Liu, Y.; MacDonald, D. A.; Yu, X. Y.; Hering, S. V.; Collett, J. L.; Henry, C. S., Analyst, 2006, 131, (11), 1226-1231.
1. “Determination of levoglucosan from smoke samples using microchip capillary electrophoresis with pulsed amperometric detection,” Garcia, C. D.; Engling, G.; Herckes, P.; Collett, J. L. Jr.; Henry, C. S., Environ. Sci. Technol., 2005, 39, 618-623.
Biosensors
92. “Application of chimeric antigens to paper-based diagnostics for detection of West Nile virus infections of Crocodylus porosus – A novel animal test case.” Johnston, R.A., Habarugira, G., Harrison, J.J., Isberg, S.R., Moran, J., Morgan, M.S., Davis, S.S., Melville, L., Howard, C.B., Henry, C.S., Macdonald, J., Bielefeldt-Ohmann, H., Hall, R.A., Hobson-Peters, J. Sensors and Actuators B: Chemical , 2024, DOI:10.1016/j.snb.2024.136611
91. “Magnetophoretic slider assay for electrochemical detection of SARS-cov-2 nucleocapsid protein in nasal swab samples.” Fukana, N., Park, J., Silva Junior, G.J., Malsick, L.E., Gallichotte, E.N., Ebel, G.D., Geiss, B.J., Dandy, D.S., Bertotti, M., Nacapricha, D., Baldo, T.A., Henry, C.S. Biosensors and Bioelectronics , 2024, DOI:10.1016/j.bios.2024.117048
90. “Peptide nucleic acid probe-assisted paper-based electrochemical biosensor for multiplexed detection of respiratory viruses.” Lomae, A., Teekayupak, K., Preechakasedkit, P., Pasomsub, E., Ozer, T., Henry, C.S., Citterio, D., Vilaivan, T., Chailapakul, O., Ruecha, N. Talanta , 2024, DOI:10.1016/j.talanta.2024.126613
89. “Application of chimeric antigens to paper-based diagnostics for detection of West Nile virus infections of Crocodylus porosus – A novel animal test case.” Johnston, R.A., Habarugira, G., Harrison, J.J., Isberg, S.R., Moran, J., Morgan, M.S., Davis, S.S., Melville, L., Howard, C.B., Henry, C.S., Macdonald, J., Bielefeldt-Ohmann, H., Hall, R.A., Hobson-Peters, J. Sensors and Actuators B: Chemical , 2024, DOI:10.1016/j.snb.2024.136611
88. “Novel theranostic wounds dressing based on pH responsive alginate hydrogel/graphene oxide/levofloxacin modified silk.” Punnoy, P., Siripongpreda, T., Henry, C.S., Rodthongkum, N., Potiyaraj, P. International Journal of Pharmaceutics , 2024, DOI:10.1016/j.ijpharm.2024.124406
87. “Automated enzyme-linked immunosorbent assay for point-of-care COVID-19 testing.” Baldo, T.A., Ataide, V.N., Park, J., Panraksa, Y., Martinez, B., Anderson, L.B.R., Malsick, L.E., Gallichotte, E.N., Ebel, G.D., Geiss, B.J., Dandy, D.S., Paixão, T.R.L.C., Henry, C.S. Electrochimica Acta , 2024, DOI:10.1016/j.electacta.2024.144525
86. “Multiplexed Capillary-Flow Driven Immunoassay for Respiratory Illnesses.” Link, J.S., O’Donnell-Sloan, J.J., Curdts, S., Geiss, B.J., Dandy, D.S., Henry, C.S. Analytical Chemistry , 2024, DOI:10.1021/acs.analchem.3c04977
85. “Capillary-driven microfluidic device integrating recombinase polymerase amplification for human papillomavirus detection.” Wisarut Khamcharoen, W., Siangproh, W., Henry, C.S., Sreamsukcharoenchai, N., Ratthawongjirakul, P., Chailapakul, O. Sensors and Actuators B: Chemical , 2024, DOI:10.1016/j.snb.2023.135016
84. “Electrochemical immunosensor for the quantification of galectin-3 in saliva.” Pittman, T.W., Zhang, X., Punyadeera, C., Henry, C.S. Sensors and Actuators B: Chemical , 2024, DOI:10.1016/j.snb.2023.134811
83. “Non-invasive iron deficiency diagnosis: a saliva-based approach using capillary flow microfluidics.” Prakobdi, C., Baldo, T.A., Aryal, P., Link, J.S., Saetear, P., Henry, C.S. Analytical Methods , 2024, DOI:10.1039/D3AY01933K
82. “Improving design features and air bubble manipulation techniques for a single-step sandwich electrochemical ELISA incorporating commercial electrodes into capillary-flow driven immunoassay devices.” Kaewarsa, P., Schenkel, M.S., Rahn, K.L., Laiwattanapaisal, W., Henry, C.S. Analyst , 2024, DOI:10.1039/D3AN01704D
81. “Surface Modification of Thermoplastic Electrodes for Biosensing Applications via Copper-Catalyzed Click Chemistry.” Martinez, B.,Leroux, Y.R., Hapiot, P., Henry, C.S. ACS Applied Materials & Interfaces , 2023, DOI:10.1021/acsami.3c10013
80. “Saliva-based microfluidic point-of-care diagnostic” Pittman, T.W., Desci, D.B., Punyadeera, C. and Henry, C.S. Theranostics, 2023, DOI: 10.7150/thno.78872
79. “Electrochemical Capillary Driven Immunoassay for Detection of SARS-CoV-2″ Clark, K.M., Schenkel, M.S., Pittman, T.W., Samper, I.C., Anderson, L.B.R., Khamcharoen, W., Elmegerhi, S., Perera, R., Siangproh, W., Kennan, A.J., Geiss, B.J., Dandy, D.S., and Henry, C.S. ACS Measurement Science Au, 2022, DOI: 10.1021/acsmeasuresciau.2c00037
78. “A smartphone-assisted hybrid sensor for simultaneous potentiometric and distance-based detection of electrolytes” Phoonsawat, K., Agir, I., Dungchai, W., Ozer, T., and Henry, C.S. Analytica Chimica Acta, 2022, DOI: 10.1016/j.aca.2022.340245
77. “Progress toward a Simplified UTI Diagnostic: Pump-Free Magnetophoresis for E. coli Detection” Call, Z.D., Jang, I., Geiss, B.J., Dandy, D.S., and Henry, C.S. Anal. Chem., 2022, DOI: 10.1021/acs.analchem.2c00316
76. “Microfluidic-based ion-selective thermoplastic electrode array for point-of-care detection of potassium and sodium ions” Ozer, T. and Henry, C.S. Microchimica Acta, 2022, DOI: 10.1007/s00604-022-05264-y
75. “Electrochemical Immunoassay for the Detection of SARS-CoV-2 Nucleocapsid Protein in Nasopharyngeal Samples” Samper, I.C., McMahon, C.J., Schenkel, M.S., Clark, K.M., Khamcharoen, W., Anderson, L.B.R., Terry, J.S., Gallichotte, E.N., Ebel, G.D., Geiss, B.J., Dandy, D.S., and Henry, C.S. Anal. Chem., 2022, DOI: 10.1021/acs.analchem.1c04966
74. “Simultaneous Analysis of Ascorbic Acid, Uric Acid, and Dopamine at Bare Polystyrene Thermoplastic Electrodes.” McCord, C., Summers, B., and Henry, C.S. ChemElectroChem, 2022, DOI: 10.1002/celc.202101600
73. “Disposable Passive Electrochemical Microfluidic Device for Diagnosis of Congenital Disorders of Glycosylation” Sierra, T., Henry, C.S., Crevillén, A.G., Escarpa, A. Analysis & Sensing, 2021, DOI: 10.1002/anse.202100038
72. “Electrochemical Capillary-Flow Immunoassay for Detecting Anti-SARS-CoV-2 Nucleocapsid Protein Antibodies at the Point of Care” Samper, I. C., Sánchez-Cano A., Khamcharoen, W., Jang, I., Siangproh, W., Baldrich, A., Geiss, B. J., Dandy, D. S., Henry, C. S. ACS Sensors, 2021, DOI: 10.1021/acssensors.1c01527
71. “A novel l-cysteine sensor using in-situ electropolymerization of l-cysteine: Potential to simple and selective detection” Khamcharoen, W., Henry, C. S., Siangproh, W. Talanta, 2021, DOI: 10.1016/j.talanta.2021.122983
70. “Immobilization of Proteinase K for urine pretreatment to improve diagnostic accuracy of active tuberculosis” Panraska, Y., Amin, A., Graham, B., Henry, C. S., Chatterjee, D. PLOS ONE, 2021, DOI: 10.1371/journal.pone.0257615
69.“Paper-based analytical devices for virus detection: Recent strategies for current and future pandemics” Ozer, T. and Henry, C. S., Trends in Analytical Chemistry, 2021, DOI: 10.1016/j.trac.2021.116424
68. “Thermoplastic electrodes as a new electrochemical platform coupled to microfluidic devices for tryptamine determination” Pradela-Filho, L.A., Araujo, D.A.G., Takeuchi, R.M., Santos, A.L., Henry, C.S. Analytica Chimica Acta, 2021, DOI: 10.1016/j.aca.2020.12.059
67. “Electrochemical paper-based analytical device for multiplexed, point-of-care detection of cardiovascular disease biomarkers” Boonkaew, S., Jang, I., Noviana, E., Siangproh, W., Chailapakul, O., Henry, C.S. Sensors and Actuators B: Chemical, 2020, DOI: 10.1016/j.sng.2020.129336
66. “A facile one-step gold nanoparticles enhancement based on sequential patterned lateral flow immunoassay device for C-reactive protein detection” Panraksa, Y., Apilux, A., Jampasa, S., Puthong, S., Henry, C.S., Rengpipat, S., Chailapakul, O. Sensors and Actuators B: Chemical, 2020, DOI: 10.1016/j.snb.2020.129241
65. “NFC-enabling Smartphone-based Portable Amperometric Immunosensor for Hepatitis B Virus Detection” Teengam, P., Siangproh, W., Tontisirin, S., Jiraseree-amornkun, A., Chuaypen, N., Tangkijvanich, P., Henry, C.S., Ngamrojanavanich, N., Chailapakul, O. Sensors and Actuators B: Chemical, 2020, DOI: 10.1016/j.snb.2020.12885
64. “Point-of-Need Disposable ELISA System for COVID-19 Serology Testing” Carrell, C., Link, J., Jang, I., Terry, J., Scherman, M., Call, Z., Panraksa, Y., Dandy, D.S., Geiss, B.J., Henry, C.S. ChemRXiV, 2020.
63. “Paper-based nuclease protection assay with on-chip sample pretreatment for point-of-need nucleic acid detection” Noviana, E., Jain, S., Hostetter, J., Geiss, B.J., Dandy, D.S., Henry, C.S. Analytical and Bioanalytical Chemistry, 2020, DOI: 10.1007/s00216-020-02569-w
62. “A microfluidic organotypic device for culture of mammalian intestines ex vivo” Richardson, A., Schwerdtfeger, L.A., Eaton, D., Mclean, I., Henry, C.S., Tobet, S.A. Analytical Methods, 2020. Accepted Manuscript.
61. “Rapid Bacteria Detection at Low Concentrations Using Sequential Immunomagnetic Separation and Paper-Based Isotachophoresis” Shaumburg, F., Carrell, C.S., Henry, C.S. Analytical Chemistry, 2019, DOI: 10.1021/acs.analchem.9b01002
60. “An Ultra-sensitive Capacitive Microwire Sensor for Pathogen-Specific Serum Antibody Responses” Wang, L., Filer, J.E., Lorenz, M.M., Henry, C.S., Dandy, D.S., Geiss, B.J. Biosensors and Bioelectronics, 2019, Accepted Manuscript, DOI:10.1016/j.bios.2019.01.040
59. “Rotary manifold for automating a paper-based Salmonella immunoassay” Carrell, C.S., Wydallis, R.M., Bontha, M., Boehle, K.E., Beveridge, J.R., Giess, B.J., Henry, C.S. RSC Advances, 2019, 9, 29078-29086
58. “Electrochemical impedance-based DNA sensor using pyrrolidinyl peptide nucleic acids for tuberculosis detection” Teengam, P., Siangproh, W., Tuantranont, A., Vilaivan, T., Chailapakul, O., Henry, C. S., Anal. Chim. Acta, 2018, Accepted Manuscript, DOI: 10.1016/j.aca.2018.07.045
57. “Paper-Based Enzyme Competition Assay for Detecting Falsified β-Lactam Antibiotics ” Boehle, K.E., Carrell, C.S., Caraway, J., Henry, C.S., ACS Sens., 2018, DOI: 10.1021/acssensors.8b00163
56. “Development of an Electrochemical Paper-Based Analytical Device for Trace Detection of Virus Particles” Channon, R. B., Yang, Y., Feibelman, K. M., Geiss, B. J., Dandy, D. S., Henry, C. S., Anal. Chem., 2018, Accepted manuscript
55. “High throughput detection of deamidation using S-(5′-adenosyl)-l-homocysteine hydrolase and a fluorogenic reagent” Murphy, B. M.; Ozumerzifona, T. J.; Henry, C. S.; Manning, M. C., J. Pharm. Biomed. Anal., 2018, 156, 323–327
54. “Powering Ex Vivo Tissue Models in Microfluidic Systems” Mclean, I.; Schwerdtfeger, L. A.; Tobet, S. A.; Henry, C. S., Lab Chip, 2018, Accepted Manuscript, DOI: 10.1039/C8LC00241J
53. “Electrochemical Biosensor System Using A CMOS Microelectrode Array Provides High Spatially and Temporally Resolved Images“, Tedjo, W.; Nejad, J.; Feeny, R.; Yang, L.; Henry, C. S.; Tobet, S.; Chen, T., Biosens. Bioelectron., 2018, Accepted Manuscript DOI: https://doi.org/10.1016/j.bios.2018.04.009
52. “Development of Paper Based Analytical Devices for Minimizing the Viscosity Effect in Human Saliva” Noiphung, J.; Nguyen, M. P.; Punyadeera, C.; Wan, Y.; Laiwattanapaisal, W.; Henry, C. S.; Theranostics, 2018, 8(14), 3797-3807
51.”IR-Compatible PDMS microfluidic devices for monitoring of enzyme kinetics” Srisa-Arta, M.; Noblitt, S. D.; Krummel, A. T.; Henry, C. S., Anal. Chim. Acta, 2018, in press, DOI: 10.1016/j.aca.2018.03.006
50. “Highly Sensitive Detection of Salmonella typhimurium Using a Colorimetric Paper Based Analytical Device Coupled with Immunomagnetic Separation,” Srisa-Art, M.; Boehle, K. E.; Geiss, B. J.; Henry, C. S., Anal. Chem., 2018, 90 (1), 1035-1043.
49. “Utilizing Paper-Based Devices for Antimicrobial Resistant Bacteria Detection,” Boehle, K.E.; Gilliand, J.; Wheeldon, C.R.; Adkins, J.A.; Geiss, B.J.; Ryan, E. P.; Henry, C. S. Angew. Chem. Int. Ed., 2017, 56 (24), 6886-6890.
48. “Multiplex Paper-Based Colorimetric DNA Sensor Using Pyrrolidinyl Peptide Nucleic Acid-Induced AgNPs Aggregation for Detecting MERS-CoV, MTB, and HPV Oligonucleotides,” Teengam, P.; Siangproh, W.; Tuantranont, A.; Vilaivan, T.; Chailapakul, O.; Henry, C. S. Anal. Chem., 2017, 89, 5428-5435.
47. “Versatile Fabrication of Paper-Based Microfluidic Devices with High Chemical Resistance Using Scholar Glue and Magnetic Masks,” Cardoso, T. M. G.; de Souza, F. R.; Garcia, P. T.; Rabelo, D.; Henry, C. S.; Coltro, W. K. T. Anal. Chim. Acta, 2017, 981, 24-33
46. “Boron Doped Diamond Paste Electrodes for Microfluidic Paper-Based Analytical Devices,” Nantaphol, S.; Channon, R. B.; Kondo, T.; Siangproh, W.; Chailapakul, O.; Henry, C. S. Anal. Chem., 2017, 89, 4100-4107.
45. “Colorimetric and Electrochemical Bacteria Detection Using Printed Paper- and Transparency-Based Analytic Devices,” Adkins, J. A.; Boehle, K.; Friend, C.; Chamberlain, B.; Bisha, B.; Henry, C. S. Anal. Chem., 2017, 89, 3613-3621.
44. “Electrochemical paper-based peptide nucleic acid biosensor for detecting human pipillomavirus,” Teengam, P.; Siangproh, W.; Tuantranont, A.; Henry, C. S.; Vilaivan, T; Chailapakul, O. Anal. Chim. Acta, 2017, 952, 32-40.
43. “Development of a Quasi-Steady Flow Electrochemical Paper-Based Analytical Device,” Adkins, J.A.; Noviana, E.; Henry, C. S. Anal. Chem., 2016, 88, 10639-10647.
42. “Label-free detection of C-reactive protein using an electrochemical DNA immunoassay,” Songjaroen, T; Feeny, R. M.; Mensack, M. M.; Laiwattanapaisal, W.; Henry, C. S., Sensing and Bio-Sensing Research, 2016, 8, 14-19.
41. “Degassed PDMS pump for controlled extraction from dried filter samples in microfluidic devices,” Feeny, R. M.; Puissant, N. L.; Henry, C. S. Anal. Meth., 2016, 8, 8266-8271.
40. “Spatiotemporal norepinephrine mapping using a high-density CMOS microelectrode array,” Wydallis, J. B.; Feeny, R. M.; Wilson, W.; Kern, T.; Chen, T.; Tobet, S.; Reynolds, M. M.; Henry, C. S., Lab Chip, 2015, 15, 4075-4082.
39. “Development of electrochemical paper-based glucose sensor using cellulose-4-aminophenylboronic acid-modified screen-printed carbon electrode,” Rungsawang, T.; Punrat, E.; Adkins, J.; Henry, C.; Chailapakul, O., Electroanalysis, 2016, 28, 462-468.
38. “Analysis of Nitric Oxide from Chemical Donors Using CMOS Platinum Microelectrodes,” Feeny, R. M.; Wydallis, J. B.; Lantvit, S.; Chen, T.; Reynolds, M. M.; Tobet, S.; Henry, C. S., Electroanalysis, 2015, 27, 1104-1109.
37. “Orthogonal Methods To Size Exclusion Chromatography (Sec) For Quantitation And Characterization Of Protein Aggregates,” Manning, R; Holcomb, R.; Wilson, G.; Henry, C. S.; Manning, M., BioPharm International, 2014, December, 32-39.
36. “Colorimetric Paper-based Detection of Escherichia coli, Salmonella spp., and Listeria monocytogenes from Large Volumes of Agricultural Water,” Adkins, J.; Gertsch, J.; Chanchand, J.; Perezmendez, A.; Coleman, S.; Osbodio, A.; Henry, C.; Goodridge, L.; Bisha, B. JOVE, 2014, Jun 9;(88). doi: 10.3791/51414.
35. “Electrochemical detection of glucose from whole blood using paper-based microfluidic devices,” Noiphung, J.; Songjaroen, T.; Dungchai, W.; Henry, C.; Chailapakul, O.; Laiwattanapaisal, W., Anal. Chim. Acta, 2013, 788, 39-45.
34. “Simple, Distance-Based Measurement for Paper Analytical Devices,” Cate, D. M.; Dungchai, W.; Cunningham, C. J.; Volckens, J.; Henry, C. S., Lab Chip, 2013, 2397-2404.
33. “Blood Separation on Microfluidic Paper-Based Analytical Devices,” Songjaroen, T.; Dungchai, W.; Chailapakul, O.; Henry, C. S.; Laiwattanapaisal, W., Lab Chip, 2012, 18, 3392-3398.
32. “Sodium Dodecyl Sulfate Modified Electrochemical Paper-Based Analytical Device for Determination of Dopamine Levels in Biological Samples,” Rattanarat, P.; Dungchai, W.; Siangprob, W.; Chailapakul, O.; Henry, C. S., Anal. Chim. Acta, 2012, 744, 1-7.
31. “Development of a Paper-Based Analytical Device for Colorimetric Detection of Select Foodborne Pathogens,” Jokerst, J. C.; Adkins, J. A.; Bisha, B.; Mentele, M. M.; Goodridge, L. D.; Henry, C. S., Anal. Chem., 2012, 84, 2900-2907.
30. “Mapping Spatiotemporal Molecular Distributions Using a Microfluidic Array,” Lynn, N. S.; Tobet, S.; Henry, C. S.; Dandy, D. S., Anal. Chem., 2012, 84, 1360-1366.
29. “Competitive, Non-Competitive, and Mixed Format Cleavable Tag Immunoassays,” Sameenoi, Y.; Mensack, M. M.; Murphy, B. M.; Henry, C. S., Methods, 2012, 56, 166-173.
28. “Characterization of Novel Microelectrode Geometries for Detection of Neurotransmitters,” Pettine, W.; Jibson, M.; Chen, T.; Tobet, S.; Nikkel, P.; Henry, C. S., IEEE Sensors, 2011, 12, 1187-1192.
27. “Poly(dimethysiloxane) Cross-linked Carbon Paste Electrodes for Microfluidic Electrochemical Sensing,” Sameenoi, Y.; Mensack, M. M.; Boonsong, K.; Ewing, R.; Dungchai, W.; Chailapakul, O.; Cropek, D. M.; Henry, C. S., Analyst, 2011, 136, 3177-3184.
26. “A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing,” Dungchai, W.; Chailapakul, O.; Henry, C.S., Analyst, 2010, 136, 77-82.
25. “Use of multiple colorimetric indicators for paper-based microfluidic devices,” Dungchai, W.; Chailapakul, O.; Henry, C.S., Anal. Chim. Acta, 2010, 674, 227-233.
24. “Review: Microfluidic Applications in Metabolomics and Metabolic Profiling,” Kraly, J. R.; Holcomb, R. E.; Guan, Q.; Henry, C. S., Anal. Chim. Acta, 2009, 653, 23-35.
23. “Electrochemical Detection for Paper-Based Microfluidics,” Dungchai, W.; Chailapakul, O.; Henry, C. S., Anal. Chem., 2009, 81, 5821-5826.
22. “Photopatternable carbon electrodes for chip-based electrochemical detection,” Gonzalez, C. D.; Cropek, D. M.; Henry, C. S., Electroanalysis, 2009, 21, 2171-2174.
21. “Analysis of Oxidative Stress Biomarkers Using a Simultaneous Competitive/Non-Competitive Micromosaic Immunoassay,” Murphy, B. M.; Dandy, D. S.; Henry, C. S., Anal. Chim. Acta, 2009, 640, 1-9.
20. “Electrode Array Detector for Microchip Capillary Electrophoresis,” Holcomb, R.; Kraly, J.; Henry, C. S., Analyst, 2009, 134, 486-492.
19. “Evanescent field response to immunoassay layer thickness on planar waveguides,” Yan, R.; Yuan, G.; Stephens, M. D.; He, X.; Henry, C. S.; Dandy, D.S.; Lear, K. L., Appl. Phys. Lett., 2008, 93, 101110.
18. “Competitive Immunoassay Methods for Simultaneous Detection of Metabolites and Proteins Using Micromosaic Patterning,” Murphy, B. M.; He, X.; Dandy, D. S.; Henry, C. S., Anal. Chem., 2008, 80, 444-450.
17. “Microfluidic Protein Patterning on Silicon Nitride Using Solvent Extracted Polydimethylsiloxane Channels,” He, X., Dandy, D. S.; Henry, C. S., Sens. Actuat. B, 2008, 129, 811-817.
16. “Detection of Cardiac Biomarkers Using Micellar Electrokinetic Chromatography and a Cleavable Tag Immunoassay,” Caulum, M. M.; Murphy, B. M.; Ramsey, L. M.; Henry, C. S., Anal. Chem., 2007, 79, 5249-5256.
15. “Multi-Analyte Immunoassay using Cleavable Tags and Microchip Micellar Electrokinetic Chromatography,” Caulum, M. M.; Henry, C. S., Analyst, 2006, 131, 1091-1093.
14. “Second virial coefficient determination of a therapeutic peptide by self-interaction chromatography,” Payne, R. W.; Nayar, R.; Tarantino, R.; Del Terzo, S.; Moschera, J.; Di, J.; Heilman, D.; Bray, B.; Manning, M. C.; Henry, C. S., Biopolymers, 2006, 84, (5), 527-33.
13. “Screening for physical stability of a Pseudomonas amylase using self-interaction chromatography,” Valente, J. J.; Fryksdale, B. G.; Dale, D. A.; Gaertner, A. L.; Henry, C. S., Anal. Biochem., 2006, 357, (1), 35-42.
12. “Effect of Buffer Species on the Thermally Induced Aggregation of Interferon-tau,” Katayama, D. S.; Nayar, R.; Chou, D. K.; Valente, J. J.; Cooper, J.; Henry, C. S.; Vander Velde, D. G.; Villarete, L.; Liu, C. P.; Manning, M. C., J. Pharm. Sci., 2006, 95, (6), 1212-1226.
11. “Second virial coefficient studies of cosolvent-induced protein self-interaction,” Valente, J. J.; Verma, K. S.; Manning, M. C.; Wilson, W. W.; Henry, C. S., Biophys. J., 2005, 89, (6), 4211-8.
10. “Enhanced determination of glucose by microchip electrophoresis with pulsed amperometric detection,” Garcia, C. D.; Henry, C. S., Anal. Chim. Acta, 2004, 508, 1-9.
9. “Direct detection of renal function markers using microchip CE with pulsed electrochemical detection,” Garcia, C. D.; Henry, C. S., Analyst, 2004, 129, 579-584.
8. “Simple and sensitive electrode design for microchip electrophoresis/electrochemistry,” Liu, Y.; Vickers, J. A.; Henry, C. S., Anal. Chem., 2004, 76, 1513-1517.
7. “Recent progress in the development of mu TAS for clinical analysis,” Liu, Y.; Garcia, C. D.; Henry, C. S., Analyst, 2003, 128, 1002-1008.
6. “Direct determination of carbohydrates, amino acids, and antibiotics by microchip electrophoresis with pulsed amperometric detection,” Garcia, C. D.; Henry, C. S., Anal. Chem., 2003, 75, 4778-4783.
5. “Screening of protein-ligand interactions by affinity chromatography,” Garcia, C. D.; Holman, S. C.; Henry, C. S.; Wilson, W. W., Biotech. Prog., 2003, 19, 575-579.
4. “Measuring Protein Interactions by Microchip Self-Interaction Chromatography,” Garcia, C. D.; Hadley, D. J.; Wilson, W. W.; Henry, C. S., Biotech. Prog., 2003, 19, 1006-1010.
3. “Pulsed amperometric detection of carbohydrates on an electrophoretic microchip,” Fanguy, J. C.; Henry, C. S., Analyst, 2002, 127, 1021-1023.
2. “The analysis of uric acid in urine using microchip capillary electrophoresis with electrochemical detection,” Fanguy, J. C.; Henry, C. S., Electrophoresis, 2002, 23, 767-773.
1. “Conductivity detection for monitoring mixing reactions in microfluidic devices,” Liu, Y.; Wipf, D. O.; Henry, C. S., Analyst, 2001, 126, 1248-1251.
Electrophoresis
39. “Rapid Bacteria Detection at Low Concentrations Using Sequential Immunomagnetic Separation and Paper-Based Isotachophoresis” Shaumburg, F., Carrell, C.S., Henry, C.S. Analytical Chemistry, 2019, DOI: 10.1021/acs.analchem.9b01002
38. “Electrophoretic Separations on Parafilm-Paper-Based Analytical Devices” Mettakoonpitak J., Henry, C. S., Sens. Actuators. B, 2018, Accepted Manuscript, DOI: 10.1016/j.snb.2018.06.130
37. “Characterizing nonconstant instrumental variance in emerging miniaturized analytical techniques,” Noblitt, S. D.; Berg, K. E.; Cate, D. M.; Henry, C. S. Anal. Chim. Acta, 2016, 915, 64-73.
36. “Calibration-free quantitation in microchip zone electrophoresis with conductivity detection,” Noblitt, S. D.; Henry, C. S., Electrophoresis, 2015, 36, 1927-1934.
35. “Sensitive, Selective Analysis of Selenium Oxoanions Using Microchip Electrophoresis with Contact Conductivity Detection,” Noblitt, S. D.; Staicu, L. C.; Ackerson, C. J.; Henry, C. S., Anal. Chem., 2014, 86, 8425-8432.
34. “Electrophoretic separations in poly(dimethylsiloxane) microchips using mixtures of ionic, nonionic and zwitterionic surfactants,” Guan, Q.; Noblitt, S. D.; Henry, C. S., Electrophoresis, 2012, 33, 2875-2883.
33. “Competitive, Non-Competitive, and Mixed Format Cleavable Tag Immunoassays,” Sameenoi, Y.; Mensack, M. M.; Murphy, B. M.; Henry, C. S., Methods, 2012, 56, 166-173.
32. “Electrophoretic separations in poly(dimethylsiloxane) microchips using a mixture of ionic and zwitterionic surfactants,” Guan, Q.; Noblitt, S. D.; Henry, C. S., Electrophoresis, 2012, 33, 379-387.
31. “Protonated diamines as anion binding agents and their utility in capillary electrophoresis separations,” Noblitt, S. D.; Speights, R. M.; Henry, C. S., Electrophoresis, 2011, 32, 2986-2993.
30. “Rapid Analysis of Perchlorate in Drinking Water at Parts per Billion Levels Using Microchip Electrophoresis,” Gertsch, J.; Noblitt, S. D.; Cropek, D. M.; Henry, C. S Anal. Chem., 2010, 82, 3426-3429.
29. “Interfacing microchip electrophoresis to a growth tube particle collector for semi-continuous monitoring of aerosol composition,” Noblitt, S. D.; Lewis, G. S.; Liu, Y.; Hering, S. V.; Collett, Jr, J. L.; Henry, C. S., Anal. Chem., 2009, 81, 10029-10037.
28. “Improving MCE with electrochemical detection using a bubble cell and sample stacking techniques,” Guan, Q.; Henry, C. S., Electrophoresis, 2009, 30, 3339-3346.
27. “High-sensitivity microchip electrophoresis determination of inorganic anions and oxalate in atmospheric aerosols with adjustable selectivity and conductivity detection,” Noblitt, S. D.; Henry, C. S., J. Chromatogr. A, 2009, 1216, 1503-1510.
26. “Electrode Array Detector for Microchip Capillary Electrophoresis,” Holcomb, R.; Kraly, J.; Henry, C. S., Analyst, 2009, 134, 486-492.
25. “Improving the Compatibility of Contact Conductivity Detection with Microchip Electrophoresis Using a Bubble Cell,” Noblitt, S. D.; Henry, C. S., Anal. Chem., 2008, 80, 7624-7630.
24. “Influence of Polymer Structure on Electroosmotic Flow and Separation Efficiency in Successive Multiple Ionic Layer Coatings for Microchip Electrophoresis,” Boonsong, K.; Caulum, M. M.; Dressen, B. M.; Chailapakul, O.; Cropek, D. M.; Henry, C. S., Electrophoresis, 2008, 29, 3128-3134.
23. “Integrated Membrane Filters for Minimizing Hydrodynamic Flow and Filtering in Microfluidic Devices,” Noblitt, S. D.; Kraly, J. R.; VanBuren, J. M.; Hering, S. V.; Collett Jr., J. L.; Henry, C. S., Anal. Chem., 2007, 79, 6249-6254.
22. “Detection of Cardiac Biomarkers Using Micellar Electrokinetic Chromatography and a Cleavable Tag Immunoassay,” Caulum, M. M.; Murphy, B. M.; Ramsey, L. M.; Henry, C. S., Anal. Chem., 2007, 79, 5249-5256.
21. “Plasma Modification of PDMS Microfluidic Devices for Control of Electroosmotic Flow,” Martin, I. T.; Dressen, B. M.; Boggs, M.; Liu, Y.; Henry, C. S.; Fisher, E. R., Plasma Proc. Polym., 2007, 4, 414-424, cover article.
20. “Separation of common organic and inorganic anions in atmospheric aerosols using a piperazine buffer and capillary electrophoresis,” Noblitt, S. D.; Mazzoleni, L. R.; Collett, J. L.; Hering, S. V.; Henry, C. S., J. Chromatogr. A, 2007, 1154, 400-406.
19. “Thermoset polyester as an alternative material for microchip electrophoresis/electrochemistry,” Vickers, J. J.; Dressen, B. M.; Boonsong, K.; Cropek, D.; Henry, C. S., Electrophoresis, 2007, 28, 1123-1129.
18. “Multi-Analyte Immunoassay using Cleavable Tags and Microchip Micellar Electrokinetic Chromatography,” Caulum, M. M.; Henry, C. S., Analyst, 2006, 131, 1091-1093.
17. “Generation of Hydrophilic Poly(dimethylsiloxane) for High Performance Microchip Electrophoresis,” Vickers, J. A.; Caulum, M. M.; Henry, C. S., Anal. Chem. 2006, 78, 7446-7452.
16. “Analysis of anions in ambient aerosols by microchip capillary electrophoresis,” Liu, Y.; MacDonald, D. A.; Yu, X. Y.; Hering, S. V.; Collett, J. L.; Henry, C. S., Analyst, 2006, 131, (11), 1226-1231.
15. “Simplified current decoupler for microchip capillary electrophoresis with electrochemical and pulsed amperometric detection,” Vickers, J. A.; Henry, C. S., Electrophoresis, 2005, 26, (24), 4641-4647.
14. “Coupling Capillary Electrophoresis with Pulsed Electrochemical Detection,” Garcia, C. D.; Henry, C. S., Electroanalysis, 2005, 17, 1125-1131.
13. “Comparison of pulsed electrochemical detection modes coupled with microchip capillary electrophoresis,” Garcia, C. D.; Henry, C. S., Electroanalysis, 2005, 17, 223-230.
12. “Determination of levoglucosan from smoke samples using microchip capillary electrophoresis with pulsed amperometric detection,” Garcia, C. D.; Engling, G.; Herckes, P.; Collett, J. L. Jr.; Henry, C. S., Environ. Sci. Technol., 2005, 39, 618-623.
11. “Enhanced determination of glucose by microchip electrophoresis with pulsed amperometric detection,” Garcia, C. D.; Henry, C. S., Anal. Chim. Acta, 2004, 508, 1-9.
10. “Direct detection of renal function markers using microchip CE with pulsed electrochemical detection,” Garcia, C. D.; Henry, C. S., Analyst, 2004, 129, 579-584.
9. “Simple and sensitive electrode design for microchip electrophoresis/electrochemistry,” Liu, Y.; Vickers, J. A.; Henry, C. S., Anal. Chem., 2004, 76, 1513-1517.
8. “Versatile 3-channel high-voltage power supply for microchip capillary electrophoresis,” Garcia, C. D.; Liu, Y.; Anderson, P.; Henry, C. S., Lab Chip, 2004, 3, 324-328.
7. “Direct determination of carbohydrates, amino acids, and antibiotics by microchip electrophoresis with pulsed amperometric detection,” Garcia, C. D.; Henry, C. S., Anal. Chem., 2003, 75, 4778-4783.
6. “The analysis of uric acid in urine using microchip capillary electrophoresis with electrochemical detection,” Fanguy, J. C.; Henry, C. S., Electrophoresis, 2002, 23, 767-773.
5. “Conductivity detection for monitoring mixing reactions in microfluidic devices,” Liu, Y.; Wipf, D. O.; Henry, C. S., Analyst, 2001, 126, 1248-1251.
4. “Conductivity detection for monitoring mixing reactions in microfluidic devices,” Liu, Y.; Wipf, D. O.; Henry, C. S., Analyst, 2001, 126, 1248-1251.
3. “Dynamic coating using polyelectrolyte multilayers for chemical control of electroosmotic flow in capillary electrophoresis microchips,” Liu, Y.; Fanguy, J. C.; Bledsoe, J. M.; Henry, C. S., Anal. Chem., 2000, 72, 5939-5944.
2. “Dual-Electrode Electrochemical Detection for Poly(dimethylsiloxane)-Fabricated Capillary Electrophoresis Microchips,” Martin, R. S.; Gawron, A. J.; Lunte, S. M.; Henry, C. S., Anal. Chem., 2000, 72, 3196-3202.
1. “Ceramic microchips for capillary electrophoresis-electrochemistry,” Henry C. S.; Zhong, M;, Lunte, S. M.; Kim, M.; Bau, H.; Santiago, J. J., Anal. Comm., 1999, 36, 305-307.
Microfluidic Devices: Plastic, polymer, and laminate
61. “Magnetophoretic slider assay for electrochemical detection of SARS-cov-2 nucleocapsid protein in nasal swab samples.” Fukana, N., Park, J., Silva Junior, G.J., Malsick, L.E., Gallichotte, E.N., Ebel, G.D., Geiss, B.J., Dandy, D.S., Bertotti, M., Nacapricha, D., Baldo, T.A., Henry, C.S. Biosensors and Bioelectronics , 2024, DOI:10.1016/j.bios.2024.117048
60. “Citizen-Based Water Quality Monitoring: Field Testing a User-Friendly Sensor for Phosphate Detection in Global Surface Waters.” Aryal, P., Hefner, C.E., Martinez, B., Brack, E., Henry, C.S. Analytical Chemistry , 2024, DOI:10.1021/acs.analchem.4c02123
59. “Microfluidic paper-based analytical devices for simple and nondestructive durian fruit maturity assessment.” Mettakoonpitak, J., Chanthabun, A., Hatsakhun, P., Sirasunthorn, N., Siripinyanond, A., Henry, C.S. Analytica Chimica Acta , 2024, DOI:10.1016/j.aca.2024.343252
58. “Automated enzyme-linked immunosorbent assay for point-of-care COVID-19 testing.” Baldo, T.A., Ataide, V.N., Park, J., Panraksa, Y., Martinez, B., Anderson, L.B.R., Malsick, L.E., Gallichotte, E.N., Ebel, G.D., Geiss, B.J., Dandy, D.S., Paixão, T.R.L.C., Henry, C.S. Electrochimica Acta , 2024, DOI:10.1016/j.electacta.2024.144525
57. “Multiplexed Capillary-Flow Driven Immunoassay for Respiratory Illnesses.” Link, J.S., O’Donnell-Sloan, J.J., Curdts, S., Geiss, B.J., Dandy, D.S., Henry, C.S. Analytical Chemistry , 2024, DOI:10.1021/acs.analchem.3c04977
56. “Capillary-driven microfluidic device integrating recombinase polymerase amplification for human papillomavirus detection.” Wisarut Khamcharoen, W., Siangproh, W., Henry, C.S., Sreamsukcharoenchai, N., Ratthawongjirakul, P., Chailapakul, O. Sensors and Actuators B: Chemical , 2024, DOI:10.1016/j.snb.2023.135016
55. “Non-invasive iron deficiency diagnosis: a saliva-based approach using capillary flow microfluidics.” Prakobdi, C., Baldo, T.A., Aryal, P., Link, J.S., Saetear, P., Henry, C.S. Analytical Methods , 2024, DOI:10.1039/D3AY01933K
54. “Improving design features and air bubble manipulation techniques for a single-step sandwich electrochemical ELISA incorporating commercial electrodes into capillary-flow driven immunoassay devices.” Kaewarsa, P., Schenkel, M.S., Rahn, K.L., Laiwattanapaisal, W., Henry, C.S. Analyst , 2024, DOI:10.1039/D3AN01704D
53. “Microfluidic organotypic device to test intestinal mucosal barrier permeability ex vivo.” Cherwin, A.E., Templeton, H.N., Ehrlich, A.T., Patlin, B.H., Henry, C.S., & Tobet, S.A. Lab on a Chip, 2023, DOI: 10.1039/D3LC00615H
52. “Microfluidic paper-based analytical devices for simultaneous detection of oxidative potential and copper in aerosol samples” Mettakoonpitak, J., Sawatdichai, N., Thepnuan, D., Siripinyanond, A, Henry, C.S. & Chantara, S. Theranostics, 2023, DOI: 10.1007/s00604-023-05819-7
51. “Saliva-based microfluidic point-of-care diagnostic” Pittman, T.W., Desci, D.B., Punyadeera, C. and Henry, C.S. Theranostics, 2023, DOI: 10.7150/thno.78872
50. “1H-NMR Profiling of Short-Chain Fatty Acid Content from a Physiologically Accurate Gut-on-a-Chip Device” Martinez, B., Schwerdtfeger, L.A., Richardson, A., Tobet, S.A., and Henry, C.S. Anal. Chem., 2022, DOI: 10.1021/acs.analchem.1c05146
49. “Progress toward a Simplified UTI Diagnostic: Pump-Free Magnetophoresis for E. coli Detection” Call, Z.D., Jang, I., Geiss, B.J., Dandy, D.S., and Henry, C.S. Anal. Chem., 2022, DOI: 10.1021/acs.analchem.2c00316
48. “Microfluidic-based ion-selective thermoplastic electrode array for point-of-care detection of potassium and sodium ions” Ozer, T. and Henry, C.S. Microchimica Acta, 2022, DOI: 10.1007/s00604-022-05264-y
47.“Thermoplastic Electrode (TPE)-based Enzymatic Glucose Sensor Using Polycaprolactone-graphite Composites” Clark, K.M. and Henry, C.S. Electronalysis, 2021, DOI: 10.1002/elan.202100446
46.“Disposable Passive Electrochemical Microfluidic Device for Diagnosis of Congenital Disorders of Glycosylation” Sierra, T., Henry, C.S., Crevillén, A.G., Escarpa, A. Analysis & Sensing, 2021, DOI: 10.1002/anse.202100038
45. “Design and application of a self-pumping microfluidic staggered herringbone mixer” Channon, R.B., Menger, R.F., Wang, W., Carrao, D.B., Vallabhuneni, S., Kota, A.K., Henry, C.S. Microfluidics and Nanofluidics, 2021, 25 (31). DOI: 10.1007/s10404-021-02426-x
44. “Point-of-Need Disposable ELISA System for COVID-19 Serology Testing” Carrell, C., Link, J., Jang, I., Terry, J., Scherman, M., Call, Z., Panraksa, Y., Dandy, D.S., Geiss, B.J., Henry, C.S. ChemRXiV, 2020.
43. “Flow Control in a Laminate Capillary-Driven Microfluidic Device” Jang, I., Kang, H., Song, S., Dandy, D.S., Geiss, B.J., Henry, C.S. ChemRxiv, 2020.
42. “Sealing 3D-printed parts to poly(dimethylsiloxane) for simple fabrication of microfluidic devices” Carrell, C.D., McCord, C.P, Wydallis, R.M., Henry, C.S. Analytica Chimica Act, 2020, DOI: 10.1016/j.aca.2020.05.014
41. “Microfluidic devices containing thin rock sections for oil recovery studies” Gerold C. T., Krummel, A. T., Henry, C. S., Microfluid. Nanofluid., 2018, 22, 7, 76
40. Powering Ex Vivo Tissue Models in Microfluidic Systems” Mclean, I.; Schwerdtfeger, L. A.; Tobet, S. A.; Henry, C. S., Lab Chip, 2018, Accepted Manuscript, DOI: 10.1039/C8LC00241J
39. “Electrochemical Biosensor System Using A CMOS Microelectrode Array Provides High Spatially and Temporally Resolved Images“, Tedjo, W.; Nejad, J.; Feeny, R.; Yang, L.; Henry, C. S.; Tobet, S.; Chen, T., Biosens. Bioelectron., 2018, Accepted Manuscript DOI: https://doi.org/10.1016/j.bios.2018.04.009
38. “IR-Compatible PDMS microfluidic devices for monitoring of enzyme kinetics” Srisa-Arta, M.; Noblitt, S. D.; Krummel, A. T.; Henry, C. S., Anal. Chim. Acta, 2018, in press, DOI: 10.1016/j.aca.2018.03.006
37. “Observation of dynamic surfactant adsorption facilitated by divalent cation bridging” Gerold, C. T., Henry, C. S., Langmuir, 2018, 34 (4), 1550–1556
36. “Graphene-polyaniline modified electrochemical droplet-based microfluidic sensor for high-throughput determination of 4-aminophenol,” Rattanarat, P.; Suea-Ngam, A.; Ruecha, N.; Siangproh, W; Henry, C. S.; Srisa-Art, M.; Chailapakul, O. Anal. Chim. Acta, 2016, 925, 51-60.
35. “Degassed PDMS pump for controlled extraction from dried filter samples in microfluidic devices,” Feeny, R. M.; Puissant, N. L.; Henry, C. S. Anal. Meth., 2016, 8, 8266-8271.
34. “Fabrication of IR-transparent microfluidic devices by anisotropic etching of channels in CaF2,” Lehmkuhl, B.; Noblitt, S. D.; Krummel, A. T.; Henry, C. S., Lab Chip, 2015, 15, 4364-4368.
33. “Spatiotemporal norepinephrine mapping using a high-density CMOS microelectrode array,” Wydallis, J. B.; Feeny, R. M.; Wilson, W.; Kern, T.; Chen, T.; Tobet, S.; Reynolds, M. M.; Henry, C. S., Lab Chip, 2015, 15, 4075-4082.
32. “Analysis of Nitric Oxide from Chemical Donors Using CMOS Platinum Microelectrodes,” Feeny, R. M.; Wydallis, J. B.; Lantvit, S.; Chen, T.; Reynolds, M. M.; Tobet, S.; Henry, C. S., Electroanalysis, 2015, 27, 1104-1109.
31. “A simple microfluidic electrochemical HPLC detector for quantifying Fenton reactivity from welding fumes,” Pluangklang, T.; Wydallis, J. B.; Cate, D. M.; Nacapricha, D.; Henry, C. S., Anal. Methods, 2014, 6, 8180-8186.
30. “Spatially resolved electrochemical sensing of chemical gradients,” Mensack, M.; Wydallis, J.; Lynn, N.; Dandy, D.; Henry, C., Lab Chip, 2013, 13, 208-211.
29. “Microfluidic Electrochemical Sensor for On-Line Monitoring of Aerosol Oxidative Activity,” Sameenoi, Y.; Koehler, K.; Shapiro, J.; Boonsong, K.; Sun, Y.; Collett, Jr., J.; Volckens, J.; Henry, C. S., J. Am. Chem. Soc., 2012, 134, 10562-10568.
28. “Mapping Spatiotemporal Molecular Distributions Using a Microfluidic Array,” Lynn, N. S.; Tobet, S.; Henry, C. S.; Dandy, D. S., Anal. Chem., 2012, 84, 1360-1366.
27. “Competitive, Non-Competitive, and Mixed Format Cleavable Tag Immunoassays,” Sameenoi, Y.; Mensack, M. M.; Murphy, B. M.; Henry, C. S., Methods, 2012, 56, 166-173.
26. “Electrophoretic separations in poly(dimethylsiloxane) microchips using a mixture of ionic and zwitterionic surfactants,” Guan, Q.; Noblitt, S. D.; Henry, C. S., Electrophoresis, 2012, 33, 379-387.
25. “Characterization of Novel Microelectrode Geometries for Detection of Neurotransmitters,” Pettine, W.; Jibson, M.; Chen, T.; Tobet, S.; Nikkel, P.; Henry, C. S., IEEE Sensors, 2011, 12, 1187-1192.
24. “Poly(dimethysiloxane) Cross-linked Carbon Paste Electrodes for Microfluidic Electrochemical Sensing,” Sameenoi, Y.; Mensack, M. M.; Boonsong, K.; Ewing, R.; Dungchai, W.; Chailapakul, O.; Cropek, D. M.; Henry, C. S., Analyst, 2011, 136, 3177-3184.
23. “Culturing and Investigation of Stress-Induced Lipid Accumulation in Microalgae Using a Microfluidic Device,” Holcomb, R. E.; Mason, L. J.; Reardon, K. F.; Cropek, D. M.; Henry, C. S., Anal. Bioanal. Chem., 2011, 400, 245-53.
22. “Review: Microfluidic Applications in Metabolomics and Metabolic Profiling,” Kraly, J. R.; Holcomb, R. E.; Guan, Q.; Henry, C. S., Anal. Chim. Acta, 2009, 653, 23-35.
21. “Evaporation from Microreservoirs,” Lynn, N. S.; Henry, C. S.; Dandy, D. S., Lab Chip, 2009, 9, 1780-1788.
20. “Analysis of Oxidative Stress Biomarkers Using a Simultaneous Competitive/Non-Competitive Micromosaic Immunoassay,” Murphy, B. M.; Dandy, D. S.; Henry, C. S., Anal. Chim. Acta, 2009, 640, 1-9.
19. “Measuring Reaction Rates on Single Particles in a Microfluidic Device,” Caulum, M. M.; Henry, C. S., Lab Chip, 2008, 8, 865-867.
18. “Chaotic advection produced via transverse electrokinetic effects in a planar microchannel,” Lynn, N. S.; Dandy, D. S.; Henry, C. S., Microfluid. Nanofluid., 2008, 5, 493-505.
17. “Competitive Immunoassay Methods for Simultaneous Detection of Metabolites and Proteins Using Micromosaic Patterning,” Murphy, B. M.; He, X.; Dandy, D. S.; Henry, C. S., Anal. Chem., 2008, 80, 444-450.
16. “Microfluidic Protein Patterning on Silicon Nitride Using Solvent Extracted Polydimethylsiloxane Channels,” He, X., Dandy, D. S.; Henry, C. S., Sens. Actuat. B, 2008, 129, 811-817.
15. “Integrated Membrane Filters for Minimizing Hydrodynamic Flow and Filtering in Microfluidic Devices,” Noblitt, S. D.; Kraly, J. R.; VanBuren, J. M.; Hering, S. V.; Collett Jr., J. L.; Henry, C. S., Anal. Chem., 2007, 79, 6249-6254.
14. “Plasma Modification of PDMS Microfluidic Devices for Control of Electroosmotic Flow,” Martin, I. T.; Dressen, B. M.; Boggs, M.; Liu, Y.; Henry, C. S.; Fisher, E. R., Plasma Proc. Polym., 2007, 4, 414-424, cover article.
13. “Thermoset polyester as an alternative material for microchip electrophoresis/electrochemistry,” Vickers, J. J.; Dressen, B. M.; Boonsong, K.; Cropek, D.; Henry, C. S., Electrophoresis, 2007, 28, 1123-1129.
12. “Multi-Analyte Immunoassay using Cleavable Tags and Microchip Micellar Electrokinetic Chromatography,” Caulum, M. M.; Henry, C. S., Analyst, 2006, 131, 1091-1093.
11. “Generation of Hydrophilic Poly(dimethylsiloxane) for High Performance Microchip Electrophoresis,” Vickers, J. A.; Caulum, M. M.; Henry, C. S., Anal. Chem. 2006, 78, 7446-7452.
10. “Comparison of surfactants for dynamic surface modification of poly(dimethylsiloxane) microchips,” Garcia, C. D.; Dressen, B. M.; Henderson, A.; Henry, C. S., Electrophoresis, 2005, 26, 703-709.
9. “Analysis of natural flavonoids by microchip-micellar electrokinetic chromatography with pulsed amperometric detection,” Hompesch, R. W.; Garcia, C. D.; Weiss, D. J.; Vivanco, J. M.; Henry, C. S., Analyst, 2005, 130, 694-700.
8. “Determination of levoglucosan from smoke samples using microchip capillary electrophoresis with pulsed amperometric detection,” Garcia, C. D.; Engling, G.; Herckes, P.; Collett, J. L. Jr.; Henry, C. S., Environ. Sci. Technol., 2005, 39, 618-623.
7. “Versatile 3-channel high-voltage power supply for microchip capillary electrophoresis,” Garcia, C. D.; Liu, Y.; Anderson, P.; Henry, C. S., Lab Chip, 2004, 3, 324-328.
6. “Experimental Studies of Electroosmotic Flow Dynamics in Microfabricated Devices during Current Monitoring Experiments,” Pittman, J. L.; Henry, C. S.; Gilman, S. D., Anal. Chem., 2003, 75, 361-370.
5. “Measuring Protein Interactions by Microchip Self-Interaction Chromatography,” Garcia, C. D.; Hadley, D. J.; Wilson, W. W.; Henry, C. S., Biotech. Prog., 2003, 19, 1006-1010.
4. “Pulsed amperometric detection of carbohydrates on an electrophoretic microchip,” Fanguy, J. C.; Henry, C. S., Analyst, 2002, 127, 1021-1023.
3. “Dynamic coating using polyelectrolyte multilayers for chemical control of electroosmotic flow in capillary electrophoresis microchips,” Liu, Y.; Fanguy, J. C.; Bledsoe, J. M.; Henry, C. S., Anal. Chem., 2000, 72, 5939-5944.
2. “Dual-Electrode Electrochemical Detection for Poly(dimethylsiloxane)-Fabricated Capillary Electrophoresis Microchips,” Martin, R. S.; Gawron, A. J.; Lunte, S. M.; Henry, C. S., Anal. Chem., 2000, 72, 3196-3202.
1. “Ceramic microchips for capillary electrophoresis-electrochemistry,” Henry C. S.; Zhong, M;, Lunte, S. M.; Kim, M.; Bau, H.; Santiago, J. J., Anal. Comm., 1999, 36, 305-307.
Review Articles
23. “Stability of Protein Pharmaceuticals: Recent Advances.” Manning, M.C., Holcomb, R.E., Payne, R.W., Stillahn, J.M., Connolly, B.D., Katayama, D.S., Liu, H., Matsuura, J.E., Murphy, B.M., Henry, C.S. & Crommelin, D.J.A. Pharmaceutical Research , 2024, DOI:10.1007/s11095-024-03726-x
22. “Recent Trends in Nanomaterial Based Electrochemical Sensors for Drug Detection: Considering Green Assessment.” Ozer, T., Henry, C.S. Current Topics in Medicinal Chemistry , 2024, DOI:10.2174/0115680266286981240207053402
21. “Microfluidics in environmental analysis: advancements, challenges, and future prospects for rapid and efficient monitoring.” Aryal, P., Hefner, C., Martinez, B., Henry, C.S. Lab on a Chip , 2024, DOI:10.1039/D3LC00871A
20. Next-generation Electrochemical Sensors for Detection of Respiratory Viruses. Akdag, A., Seyman, D., Henry, C.S., Sagdic, O., Lomae, A., Ruecha, N., Vilaivan, T., Chailapakul, O., Ozer, T. Sensors & Materials, 2023
19.“Paper-based analytical devices for virus detection: Recent strategies for current and future pandemics” Ozer, T. and Henry, C. S., Trends in Analytical Chemistry, 2021, DOI: 10.1016/j.trac.2021.116424
18. “Sensors for Detecting Per- and Polyfluoroalkyl Substances (PFAS): A Critical Review of Development Challenges, Current Sensors, and Commercialization Obstacles” Menger, R.F., Funk, E., Henry, C.S., Borch, T. Chemical Engineering Journal, 2021, DOI: 10.1016/j.cej.2021.129133
17. “Emerging Applications of Paper-Based Analytical Devices for Drug Analysis: A Review” Noviana, E., Blascke Carroao, D., Pratiwi, R., Henry, C.S. Analytical Chimica Acta, 2020, DOI: 10.1016/j.aca.2020.03.013
16. “Simultaneous Electrochemical Detection in Paper-Based Analytical Devices” Noviana, E., Henry, C.S. Current Opinion in Electrochemistry. 2020, DOI: 10.1016/j.coelec.2020.02.013
15. “Advances in Paper-Based Analytical Devices” Ozer, T., McMahon, C., Henry, C.S., Annual Review of Analytical Chemistry. 2020, 13(1), 15-19.
14. “Chemical and Biological Sensors for Viral Detection” Ozer, T., Geiss, B.J., Henry, C.S. Journal of The Electrochemical Society, 2020, DOI: 10.1149/2.0232003JES
13. “Electrochemical paper-based devices: sensing approaches and progress toward practical applications” Noviana, E. McCord, C.P., Clark, K.M., Jang, I., Henry, C.S. Lab on a Chip, 2019, DOI: 10.1039/c9lc00903e
12. “Multilayered Microfluidic Paper-Based Devices: Characterization, Modeling, and Perspectives” Channon, R.B., Nguyen, M.P., Henry, C.S., Dandy, D.S. Analytical Chemistry, 2019, DOI: 10.1021/acs.analchem.9b01112
11. “Beyond the Lateral Flow Assay: A Review of Paper-based Microfluidics” Carrell, C.S., Kava, A., Nguyen, M.P., Menger, R.F, Munshi, Z., Call, Z., Nussbaum, M., Henry, C.S. Microelectronic Engineering, 2018, Accepted Manuscript, DOI: 10.1016/j.mee.2018.12.002
10.”Critical Components and Innovations in Paper-Based Analytical Devices” Channon, R.B., Srisa-Art, M., Boehle, K., Henry, C.S. Paper-based Diagnostics, 2018, DOI: 10.1007/978-3-319-96870-4_3
9. “Powering Ex Vivo Tissue Models in Microfluidic Systems” Mclean, I.; Schwerdtfeger, L. A.; Tobet, S. A.; Henry, C. S., Lab Chip, 2018, Accepted Manuscript, DOI: 10.1039/C8LC00241J
8. “Paper-Based Microfluidic Devices: Emerging Themes and Applications,” Yang, Y.; Noviana, E.; Nguyen, M. P.; Geiss, B. J.; Dandy, D. S.; Henry, C. S. Anal. Chem., 2017, 89, 71-91.
7. “Electrochemistry on Paper‐based Analytical Devices: A Review,” Mettakoonpitak, J.; Boehle, K.; Nantaphol, S.; Teengam, P.; Adkins, J.A.; Srisa-Art, M; Henry, C. S., Electroanalysis, 2016, 28, 1420-1436.
6. “Paper-based analytical devices for environmental analysis,” Meredith, N. A.; Quinn, C.; Cate, D. M.; Reilly, T. H.; Volckens, J.; Henry, C. S., Analyst, 2016, 141, 1874-1887.
5. “Electrochemical Paper-Based Microfluidic Devices,” Adkins, J.; Boehle, K.; Henry, C. S., Electrophoresis, 2015, 36, 1811-1824.
4. “Recent Advances in Paper-Based Microfluidic Devices,” Cate, D. M.; Adkins, J. A.; Mettapoonpitak, J.; Henry, C. S., Anal. Chem., 2015, 87, 19-41.
3. “Advances in Microfluidics for Environmental Analysis,” Gertsch, J.; Emory, J.; Henry, C. S., Analyst, 2012, 137, 24-34.
2. “Review: Microfluidic Applications in Metabolomics and Metabolic Profiling,” Kraly, J. R.; Holcomb, R. E.; Guan, Q.; Henry, C. S., Anal. Chim. Acta, 2009, 653, 23-35.
1. “Recent progress in the development of mu TAS for clinical analysis,” Liu, Y.; Garcia, C. D.; Henry, C. S., Analyst, 2003, 128, 1002-1008.